#  <br> RADOGTV ExP:RMIMNTIR $75 c$ Spring 02 

## DXers' MUST!

 The NewWHITE'S
RADIO LOG

1000 Revisions in US. and Conadian AM-FM-TV STATIONS

World-Wide Short Wave


Air Raid Radio Alarm . FM Booster TV Repair Tips . Ham Band Marker

trouble shooting with the signal tracer

## A YALUABLE ELECTRONICS LAB <br> Semoining gerti by MCA, MALLOMP, PYRAMIB,  milioblo meaulesturest. 贯etall Pelus ol perts ralone in MONE TMAMI 25 DOLGAN <br> A COMPLETE <br> ELBCTRONICS COURSE

The manuali are experily writion, the arly illustraptd ... e making, II easy for you to bulld 15 projessk in olectrontes. stop-by-stop.. You gain a valuable ales. troniss batkground, thai will enrich your IIto and, help shaper your futurel Bask enough for beginners ... rewerding enough for expentr. Nowhere else is a rourse- of phyis scope avallable of thls LOW PRICE!

## ENTHUSIASTIC MEMBERS WRITE:

"basie principlose valorgeiviubly

 ond untorgettably learnets the bacie prinetples af eiectruntro. JOMN B. KAWIA. \& Herkelet Ave. Yunkerm 5. No L 。

## "your hito aro" Inidrbuting and

rewording"
t sim an elertionles atulent in the Alr Vurros ond find four kite Interenting and rewardinc. fre have mot cotered astyitions in five arbouk
 O. DILL. Kedbler Alr forven Hase 'milusi. shou.
"fat ahead ot- Ifiond loktrop"
another esume
 ceared in elortromerr., and I hatron toarmas morr
 IWHIY lotamas. hay P. BILODEAU. J3y

"Thes number of censepto pesethisgid in emasing:
Sous zile nefor a sanas of experimionta usurite performed only in the beffer hash uchual and mallege lobiowatusiost, The number A conceple preientod. and the rlarliy anat




## Complete Lab and Course comes in $\mathbf{4}$ kits . . . one a month

## KIT 1 - MAGNETISM AND ELECTRICITY

Builds 26 Projects including:

- Electroscope - Electro Magnet
- Galvanometer - AC Buzzer Demognetizer - Relay - Solenoid Coin Tosser

Subjects include:

- Mognetic Fields - Eleciron Theory - Electric Charge - Direct Current - Elettro-Chemistry Alternating Current - Inductance
- Transformer Principles

FREE with kit 1 - Surprise "Mystery Box"
KIT 2 - RESISTANCE, CAPACITANCE AND RECTIFICATION

Builds 18 Projects including:

- Strobe Light - Thermocouple
- Wheatstone Bridge - Voltmeter
- AC Restifier - DC Power Supply

Subjects include:

- Ohm's Law - Power formulas
- Rectificatlon - Reslstance Neon Glow Tubes - Capacitance
- Filter Circuits

FREE with kit 2 - Electric Soldering Iron

## KIT 3 - AMPLIFIERS AND OSCILLATORS

## Builds 14 Projects including: <br> Subjects include:

- Two Stage Amplifier - Capocitance - Burglar Alarm - ProxImity Defector - High Speed Strobe light - Ripple Tank Wave Gen. erator - Code Practice Oscillator
- Vacuum Amplifier Tubes - Volt age Amplification - Oscillator Circuits - Frequency and Wave Length Sound Waves, Pitch and Resonance
FREE with kit 3 - "Steps to a Ham License" Manual


## KIT 4 - AUDIO AMPLIFICATION AND RADIO

Builds 7 Projects including:

- Microphone and Audio Ampllfier
- Broadcast Radio - Short Wave Radio - Signal Tracer - Transmitter


## Circuits

FREE with kit 4 - Radio-TV Service Manual

## 

## seno $\$ 000$ wirn par $\$ 2.35$ for hach kit rou hective

 ONLY COUPON ONLY $\sim$ (OWE MONTH FOR MONTHSYour Sapisfacfion of Your money Beck. . . AWD You May cencel ef eay pime withouf obligafion. These "Wo Risk" essurances bernwse we thow you will be

## SURPRISED! AMAZED! DELIGWTED!

[^0]NAME
ADDRESS
CITY and STATE

## MAIL TIIS MOWEy-SAVIWG COOPOW NOW:

# Cast your ballot for a successful future! 249 I.C.S. COU R SES 

I. C. S. is the oldest and largest correspondence school. 249 courses. Business, industrial, engineering, academic, high school. One for you. Direct, job-related. Bedrock facts and theory plus practical
application. Complete lesson and answer service. No skimping. Diploma to graduates.

Send for the 3 free booklets offered below and find out how l.C.S. can be your road to success.,

## accountime

## Accounting

Auditing
Cost Accounting
General Accounting
Junior Accounting Pu\&lic Accounting

## movertising

Advertising
Magazine of Newspaper
vertising

## afchitectuag

 AND BUILDING CONSTRUCTIONArchitectural Drawine \& Designing Architectural Interiors Architecture
Building Contractor Bullding Contractor with Drawing
Building I stimator Building Ma inlenance Carpenter. Builder Carpentry \& Millwork Mouse Planning Lumber
Painting Contractor Reading Arch. Blueprints Reading Sttuct. Blueprints
aft
Advertising Layout \& Hustration Amateut Artist Commercial Art Commercial Cartooning Fashioo Illustrating
Figur Drawing \& Figure Orawing of Painting Magarine Clusirating Show Card \& Sign Prod't'n Sign Painting \& Designing Sketching \& Pointing

## automotive

Auto Engine Tune-up Automobile
Automobile Body Rebuilding and Refinishing
Automobile Electrical Technlecian
Automobile Technician
Disesel Engines
Dusel Engines

Diesel-Gas Motor Vehicle Engines
Internal Combustion Engines

## aviation

Aero-Eng uneèing technology Aero-Enguneesing Eechnolog Aircratt Mechanic Aviation Engine Mechanic

## business

Business Administralion Business Correspondente Business Law Bus iness Management Business Management \& Marketing
Business Management \& Production Business Psychology Canadian Business Clerk-Typist Commercial
Condensed Business Practice Federal Tar Course Managing a Small Business Marketing.
Office Adminlstrative Engineering
Office Management
programming for Digital
Computers for Digita!
Purchasing AB
Retait Busine ss Management Shorthand
Stenographic
yoewring
Analytical Chemistry Chemical Engineering Chemical Engineering Unit Operation
Chemical Laboratory Techniezan Elements of Nuclear Energy Industrial Analytical Chemistry Industrial Chemistry Protessional EngineerChemical

## PULP ANO PAPER

Paper Moking
Pulp \& Paper Engineering

Pulp \& Paper Makins Pulp 8 Paper
Pulp Making CIVIL ENGINEERINO Bridge \& Building Foreman Constructlon Engineering Mighway Engineering Mine Surveying \& Mapping Principles of Mapping Principles of Surveying Professionat Engineer-Civil Ralifosad Engineering Roadmaster Sanitary Engineerling Section forema Sewage Plant Operalor Surveying and Mapoing Weter Works Operator

## DRAFTING

## Aireraft Dralting

 Architectural Drafting Dratling of Machine Design Electrical Dratting Electrical Englieer Dratting Electronic Drafting Industrial Piping Drafting Juntor Mechamical Draftins Sheet Metal Dralting Structural Draiting
## ELECTRICAL

Elec. Appliance Servicine Electrical Contractor Electrical Eng'r'g (Power Plant optron-Electronic option
Electrical Engineering Tech. Electrical Instrument Tech. Electric Motor Repairman humination Engrg Jech. Power-House Engineering Power-House Engineeri Construction Practical Electrician Practical Lineman Prolessional Engineer Electrical Reading Electrical Blueprints HIGH SCHOOL Good English High School Business High School College Psep

High School College Prep (Engineering \& Science) High School General High School Mathernatics High School Secretarial Modern Letter Writing Short Story Writing

## LEADEASHIP

Industrial Foremanship Industrial Supervision personnel-Labor kelations Supervision

## mathematics

Mathematics and Mechanlcs mor Engineets Mathematics and Physics for Engineers Mathemafics and Physics for Technicians

## MECHANICAL

Industrial Engineeting Industrial Instrumentation Junior Mechanical Engineering Proletsional Englneer Prochanical Quality Control Introductory Technical writing

## PETROLEUM

Natural Gas Production \& Transmission Oil Field Technology Petroleum Production Petroleum Prod't'n Eng'r's Petroleum Refinery Operator Petroleum Refining Petroleum Technology

## PLastics

Plastics Technician plumbing, heatina, AIR CONDITIDNING Ais Conditioning Air Condifioning whh Draw's Air Conditioning Mainlenance Domestic Hasting with Oll \& Gas Domestic Refrigeration Heating
Heating \& Air Conditioning Heat
Plum

Plumbing Plumbing, Ora
Estimating Plumbing \& Heating Plumbing \& Steamhlling Practical Plumbing Refrigeration Relrigeration \& Air Sleamfiting

## RAILROAD

Air Brake Equipment Car Inspector \& Air Brake Diesel Electrician Diesel Engineer \& fireman Diesel Lacomotive Diesel Machinist Raifrcad Aoministration Raliroad Car Repai

## SALESMANSHIP

Creative Salesmanship Real Estate Salesmanahip Retall Merchandising Retail Sulling Sales Management Salesmanship Salesmanstip \& Sales Management

## SHOP PRACTICE

Boitermaklog
Electric Welding
Foundry Practice
Gas and Electric Welding Gas Welding Heal Treatment of Metals Industolal Metailurgy Machine Shop Inspection Machine Stop Piactice Machimahing Practice Metallurgical Technology Engineering Phystical Quatity Contro of Metals
Peactical Millwrighting Reading Shop Blueprints Resistance Welding Technology Rigging
Salety Engin'r'g Technology Sheet Metal Worker Design

Toolmaking Welding Engineering Technology

## STEAM AND DIESEL <br> POWER

Combustion Engineerine Power Planl Engineerine Stationary Bullding Enp!'s Stationary Diesel Eng'r's Stationary Diesel-Electric Engineering Stationary Fireman Stationary Steatr Eng'r'e Steam Engine Operation

## TEXTILES

Carding and Spinning Carding
Cotton Manufacturing Cotton Warping \& Weaving Dyeing \& Finishing Hosiery and Circular Knittine Loom iniag Synthefic Fabrite manulacturing. Synthelic Throwing, Wafping of Weaving
Testile Designing
Tertile Enplineering
Tertile Mill Supervisor Woolen Manulaciuring
Worsted Manufacturing

## tratric

Motor Traffic Management Rafleoad Rate Cleth Tiafic Management

## TV-RADIO-ELECTRONICS

 Gen'। Electronics Techoician Industrial Electronies Practical Radio-TV Eng'r's Radio Operating fadio Servicing with Practical Thaining Radio \& TV Servicing Radio \& TV Servicing with Practical Ifaining Servicing Electr'n'c Devices Servicing Sound Equi'D't Practical Telephony Communications TV Receiver Servicin TV TechnicianFor Real Job Security-Get an I. C. S. Diploma! I. C. S., Scranton 15, Penna.
Accredited Member
National Home Study Council

## INTERNATIONAL GORRESPONDENCE SGHOOLS

BOX 84448C, SCRANTON 15, PENNA.
In Hawaii reply P.O. Box 418, Honolulu
Without cost or obligation, send me "HOW to SUCCEED," the opportunity booklat about the field I have indicated below, and a sample lesson
Name of the course in which you are interested
Your Name $\qquad$ Age $\qquad$ Home Address

City Zone $\square$ State $\qquad$ Working Hour A.M. $\qquad$
Occupation Canadian residents send coupon to International Correspondence Schools, Canadian, Lid. Montreal, Cenada. . . Special iow monthly tuition rates to members of the U. S. Armed Forces

## COVER STORY

VHF Converter for Shortwave or Communications Receivers.33
WHITE'S RADIO LOG (New 37-Page List Includes Over 1,000 Changes)
All U. S. and Canadian AM, FM and TV Stations; Mexieo, Cuba, World-Wide Shartwave. 151
PROJECTS FOR RADIO EXPERIMENTERS
Inexpensive Baltery Power Supply ..... 25
Midget Public Address System Amplifier. ..... 29
Quickie: Three-Transistor Radio ..... 41
Build Your Own Hi-Fi Stereo Headphones ..... 47
DX Shartwaves with a Crystal Diode ..... 62
Practical One-Tuber for Serious Beginner. ..... 67
How to Design Your Own RF Coils ..... 85
Two-Channel Mixer for Hi-fi ..... 94
Tuned Radio Frequency Tuner ..... 112
Simplified Panel Lettering ..... 121
Transistorized Hi-Fi Preamp ..... 133
OF SPECIAL INTEREST TO HAMS
Multiple Channel Crystal Selectors ..... 72
3-N-1 Antenna Box. ..... 89
HOW TO MAKE TEST EQUIPMENT-SERVICING TIPS
Don't Kick Your TV Set-Fix If ..... 44
AC Volt Board for $\$ 6$ ..... 80
More Power for Your FM Set ..... 50
Deluxe Transistor Checker ..... 106
Transistorized Signal Tracer. ..... 53
Decade Resistance Box ..... 127
Low-Range Ohmmeter 57 RF-AF Resonance-Frequency Meter ..... 143
OTHER USEFUL ELECTRONICS PROJECTS
\$16 Electronic Metronome Timer. ..... 26
Compass Galvanometer. ..... 75
Air Raid Radio Alarm-Control Switch. 39 HO-4 Train Control ..... 76
Pushbutton Music Box 59 Applause Meter ..... 102
Experimenting with a Capacity Control. . 118
DEPARTMENTS AND PUZZLES
Ourlaw DX ..... 92
Shortwave Guideposts ..... 115
What's Your Radio-TV Theory Quotient? . 101 TV Circuit Puzzle ..... 122
Looking Over New Products ..... 139
Cover by Bill Wadkins
B. G. DAVIS
Publisher
JOEL DAVIS
Assistant Publisher
Published and Copyrighted 1962 by
SCIENCE AND MECHANICS PUBLISHING COMPANY
A Subsidiary of Davis Publications, Inc.
450 East Ohio Street
Chicago 11, Illinois
RADIO-TV EXPERIMENTER No. 595 presents a number of the most popular electronics articles that have appeared in SCIENCE and MECHANICS magazine, plus many new projects covering AM.FM radio television, and dollar-saving test equipment of interest to all experimenters, amateurs, and DX fans. A newly revised White's Radio Log is also included.

ART YOUNGQUIST Editor

## GARRY WINTER

 Managing Editor LYNELL A. JOHNSON Assistant EditorDON A. TORGERSEN Assistant Editor LEROY R. KIETZMAN Production Editor

## BLLL WADKINS

 Art DirectorWAYNE WILLE
Managing Editor
Science and Mechanics
Advertiaing offiees: Chicago



-


## COYNE offers <br>  RADIO ${ }_{\text {Spare Time AT HOME }}$ RAD Spare Time AT HOME

## The future is YOURS in TELEVISION:

A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training designed to meet Coyne standards at truly lowest cost - you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money early in caurse. Free Lifetime Employment Service to Graduates.

## ELEcTAICAL Scmoon

CMARTERED AS AN EOUCATIONAL INSTITUTIOM NOT FOR PROFIT
1501 W. Congress Parkway - Chicago 7, Dept. 32-H9

B. w. cooke, ر, Provident

Coyne-the inetilustion behind this traiming. . The lergest, oldest, best ogrippod revidential achoolof ise kind. Fon nded lase
-


Send Coupon or write to address below for Free Book
and full details, including easy Payment Plan. No obligation, no salesman will call.


## COYNE Television

Home Training Division
Dept. 32-H9, New Coyne Building 1501 W. Congress Pkwy., Chicago 7, III.
Send Free Book and details on how I can get Coyne Quality Television Home Training at low cost and easy terms.
Name $\qquad$
Address
City $\qquad$

# TRY MY TV and CODRS FREE RADIO 

REPAIR FOR 1 MONTH
"If you haven't earned at least $\$ 100$ in spare time during that period you pay not a cent."

Mere it list The mont amazing guarantee ever offered on any radio-TV Courge anywherel We'll, send you Abraham Marcus" course to use FREE for one fyll month! If in that time you haven't actually made
$\$ 200$ fixing radios and TV sets, fust return the books to ut and pay Sot a pennyi
Why do we make thls sensational offer First, because these books are so easy to use. They are written in the same ciear, easy-to-understand language that made the author's "Elements of Radio" a 1.000.000copy best-seller. Second because these books get right to the point
-tell you what to do in $2 \cdot 2-3$ fashlon. for example. once you master the frst few chaptera of the TV book you are ready for busineasready to do service jobs in the field-jobs that account for over $80 \%{ }_{0}$ DON'T Werist You risk nothing when you send the coupon below. make extra money fixing radios and TV sets. Even when you decide to keep them, you pay on easy terms. Mall the coupon now.


WHAT YOU GET IN THESE

## 3 GIANT VOLUMES

ELEMENTS OF TELEVISION SERVICING. Analyzes and illustrates more TV defects than any other book, and provides complete step-by-step procedure for correct-
ing each. You can actually SEE what to do by looking at the pletures. Reveals for the first time all detalls, theory and servicing procedures for the RCA 28 -tube color television recelver, the CBS-Columbia Model 205 color set, and the Motorola 19 -inch color recelver.
RADIO PROJECTS. Bulld your own recelvers $!$ GIves you 10 easy-to-follow projects, Including crystal detector receiver -diode detector recelver-regenerative receiver-audlo-frequency amplifier-tuned radio-frequency tuner-AC-DC superheterodyne receiver-etc.
RADIO SERVICING Theory and Practice. Here is everything you need to know about radlo repair, replacement, and readjustment. Easy-to-understand, step-by-step self-training handbook shows you how to locate and remedy defects quickly. Covers TRF receivers; superheterodyne receivers, short-wave, portable, automobile receivers, etc. Explains how to use testing instruments, such as meter, vacuum-tube how to use testing instruments, such
voltmeters, tube checkers, etc., etc.

## DETECT POLICE RADAR TRAPS BEFORE THEY DETECT YOU RADAR KING

## WARDELL SMITH, 65 GLENWOOD ROAD, UPPER MONTCLAIR, N. J.



## 8 TRANSISTOR rwo ano PORTABLE RADIO

Now-at the flick of your finger, you can tune in any | part of the world! Thrill to broadcasts direct from Africa, South America and Europel Only \$29.50. A nine volt 006P transistor batteries only 39\$ each. Order yours now.
A. JOHNSON / 233 Barrett Ave., Jamestown, N. Y.


You'LL FALL IN LOVE

SEE PAGE 148


Shown above is the valuable new combination oscilloscope and volt. meter which Devry Tech men build during the new iraining program. But that's not all! New movies, new experimental projects-all prepare you thoroughly in this latest and greatest DeVry Tech training program.

## In Spare Time at Home . . . PREPARE FOR A BETTER JOB OR YOUR OWN BUSINESS in One of Many Branches



If you are seeking a better job er a business of your own, the appealing field of Television-Radio-Electronics offers REAL PROMISE!
In this Zasigrowing field, Irained Electronic technicians find many good-paying, interesting jobs in manufacturing, installing, operating, servicing. Equally important is the fact that these are GOOD JOBS-offering the kind of a fufure that an untrained man often dreams about. No previous technical experience or advariced education needed. Prepare for this profitable field in your spare time at home, or in our modern Chicggo or Toronto Laboratories. Nothing else like it! Send for free details.

## EARN WHILE YOU LEARN!

 After you get part of DeVry Tech's training with equipment af home, you may then in your spare time, begin to earn real money servicing Ra. dio and Television sets.Build and keep this BIG Devry Engineered TV set easily converted to U.H.F. (optional training feature at moderate added cost.)

## Your Guide to Profitable Job Opportunities!

## TV-Radio Broadcast Techniçian Color Television Specialist

MILITARY SERVICE If you are swbject to mil. ilary service, the infor. mation we have should prove very helpful. Mall coupon todey.
YOU ALSO GET the same EMPLOYMENT SERVICE that has helped thousands of our graduales toward fine careers in Electronics.
 home movies
... make important points crystal clear. Speeds your learning. It's almost llke having an instructor at your side!

Send for 2 FREE Booklets Now!
Accredited Member of National Home Study Council "Ono of North America's Foremost Elsetronies Training Centers"

## DeVRY TECHNICAL INSTITUTE

## $=$

Radar Operator - Laboratory Technician Airline Radio Man Computer Specialist Quality Control Manager Your Own Sales \& Service Shop ... PLUS MANY OTHERS


Learn-By-Doing projects

## Build over 360

Radio-Electron proctical projecis trom many sis
circuits.awireless parts. You build and operate Thents of grojects-all designed mene...and many other TV.Radio 2 cal experience of home.

ATT MM/ Get information-packed publi cation FREE Mal coupon today.

## DeVRY TECHNICAL INSTITUTE

4i4l Belmont Ave., Chicago 41, Ill\% Dept. RTE-l-S Please give me your FREE booklet, "Electronics and YOU," and tell me how I moy prepare to enter one or more branches af Electronies.

Name
pleast paint
Street

Cliy For details of Canadlan Iraining Programs, oddrest DeVry Tech of Canado, lit.,
2044-A 970 Lawrence Avenue West, Toronto 19, Ontario

## EEECTRONIC KITS... <br> HI-FI <br> TEST INSTRUMENTS <br> HAM GEAR <br> CITIZENS RADIO <br> TRANSISTOR RADIO

- All easy-to-bulld - with complete, step-by step, beginner-tested pictorial Instructions
- All tremendously economical - cost $50 \%$ less than comparable wired units
- All fully guaranteed - lifetime service and calibration at small cost
and All in the latest
साज Catalog


WEBCOR STEREO CHANGER


Original Price \$38.95

## Your Cost \$19.95

These are current production factory fresh four-speed changers in original faetory cartons, not surplus junk or changers in original lactory cartons, not surplus junk or seconds lions, or replacementst

## Check These Features!

dily conotructed malnplatereo hi-fi cartridge included. sturablorb vibration and remove rumble, plays all size records, all four speedsy and both stereo and monaural records. Exclu, Bive intermix features. ©inchanger automatically ahuis off after deep. $51 / 2{ }^{\prime \prime}$ above and 4 " below. Totai cost-only $\$ 19.9 \mathrm{~s}^{131 / 4 "}$ Northlake, III.
Wood bases in blonde or walnut finism
Mounting board
45 RPM Spindle
$\$ 3.50$
45 RPM Spindle adapter
EXTRA!!!PRESS TO TALK MIKE $\underset{\text { Price }}{\text { Original }} \$ 52.50 \begin{gathered}\text { Your } \\ \text { Cost }\end{gathered} \$ 10.95$ This is a high quality. American made low as well as stationary use. Perfect for moblle press-to-talk unit, fully chrome plated and complete with $6^{\prime}$ four conductor cable. TOT
cost-Only $\$ 10.95 \mathrm{f} .0 . \mathrm{b}$. Northlake, JIl.

ORDER DIRECT TODAY-No C.O.D.'s please.
JOSEPH ELECTRONIC SUPPLY, INC.
48 S . Wolf Rd.
Northlake, Illinois


## Surplus Bargain Meter!

_ Uses newest cadmium sulfide light cell

- Measures foot candles 0 to 10,000

ASA speeds 3 to 25,000

- F stops 7 to 90
- Exposure time $1 / 15,000 \mathrm{sec}$. to 8 hrs . Measures moonlight to bright sunlight
- 4 Range selection
- Use with still or movie camera
- EV-EVS-LV settings
_ Use as densitometer
- Practical dark room meter
- Use with microscope and telescope
- Weighs only 10 ozs.

And yet, this all inclusive kit can be assembled with hand toals in less than two hours. Our step by step instructions make it easy.
Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchased individually cost $\$ 34.00$. Yet, because of a surplus windfall we're able to send it complete to you postpaid for only $\$ 19.95$. Once more, this meter is unconditionally guaranteed to outperform any $\$ 75$ meter available today or your money will be refunded.
| SCIENCE and MECHANICS, Dept. 827, Kits Division | 505 Pork Ave., New York 22, N. Y.
I Enclosed is $\$ 19.95$. Please send me your complete kit and plans for assembling the S\&M super sensitive light meter. I understand that if 10 m not completely satisfied. I may | return the kit within 10 days for a complete refund.
name
ADDRESS
CITY, ZONE. STATE
L


START NOWI Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares you at home in spare time - for a high-paying CAREER in ElecIronies - TV - Rodlo as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunilies in All Phases: Servicing, Communications, Preparation F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.
A more rewarding job . ., a secure future ... a richer, fuller life can be yours! As on M.T.S. MASTER TECMNICIAN you can go straight to the top in industry... or in your own profitable business.

## SUCCEED IM MAMY RIGH-PAYING JOBS LIKE THESE...

## I9 BIG KITS

- TV-Radio Sales, Service and Repair
- Profitable Business of Your Own
- Communications Technician - F.C.C. License
- Hi-fi, Stereo \& Sound Recording Specialist
- IV.Radio Broadcasting Operator
- Technician in Computers \& Mlssiles
- Electronics field Engineer
- Specialist in Mierowaves \& Servomechanisms
- Expert Trouble Shooter
- All-Phase Master Jechnician



## NATIONAL Thamay SCH00LS <br> 

 Write Dept. RKK-32
N.T.S. Shop-Tested HOME TRAINING is Better, More Complete, Lower Cost. . . and it is your key to the most fascinating, opportu. nity.filled industry today!

## YOU LEARN QUICKLY AND EASILY

 THE N.T.S. SMOP-TESTED WAYYou get lessons, manvals, job projeets, unlimited consultation, gradu. ate advisory service.
You build a Short Wove-Long Wave Superhet Receiver, plus a largescreen IV set from the ground up, with parts we send you of no oddi.
fional cost. You olsa get a Professional Multitester for your practical jab projects.

## EARN AS YOU LEARN... WE SHOW YOU HOWI

Many sfudents pay for entire fuition - ond earn much more - with spare time work they perform while training. Yau can do the same... we show you how.
SEND FOR INFORMATION NOW... TODAYIIT COSTS YOU NOTHING TO Investigate.


## Moil New To

National Technical Schools Dept. RKK-32 4000 S. Figueroo 5 t., Les Angeles 37, Calif. Please rush FREE Electronics-
TV-Rodio "Opportunity" Boat and Aetual Lesson. No Solesman will coll.


BUILD YOUR OWN


## 6 VERY LIMITED OFFER $\$$

We're cleaning house and we trund an ssoptment of circus plans too rood to pass up. Everyibing you need to build your own model circusl There are Dlans for tho steam calliope. the blg top wagon circus animals and many more. Urisinally these plans sold for $\$ 1.00$ each but now $y$ ou can buy an assort osent of three at our special clear-
ance price of only $\$ 1.00$. Better vet, why not buy all 12 plans for only $\$ 3.00$. Order now-while the supply lasts.

SCIENCE AND MECHANICS, Craftprint Divislon
Dept. 2214,505 Park Avenue, New York 22, N. Y.
$\square$ Enclosed is \$1.00. Please send 3 usiorted circus dians.
$\square$ Enclosed 18 \$3.00. Please send sll 12 ussorted circus plans

Name
Address
city ....................................... $20 \mathrm{ng} . .$. . 8tata

## All Purpose SHOP TACHOMETER



Motor Speeds


Drilling Speeds


Tape Recorder Speeds


Lathe Cufting Speeds

Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchased individually cost over $\$ 50.00$. Yet because of a surplus windfall we're able to send it complete to you postpaid for only $\$ 16.95$. Once more this tachometer is guaranteed to outperform any $\$ 50$ tachometer available today or your money will be refunded.

## MEASURES 0-15,000 RPM IN 3 RANGES

Use it to measure speeds on:

- tape recorders - lathes - cutting tools - Kart engines - model plane ENGINES - HIGH SPEED DRILLS - APPLIANCE MOTORS - PULLEY BELTS - AUTO ENGINES • MANY OTHER USES


## Complete kit and instructions make if easy to assemble enire kit in less than two hours using only hand tools. <br> 

SCIENCE and MECHANICS, KI\$ Division Depł. 828, 505 Park Avenue, New York 22, N. Y. Enclosed is $\$ 16.95$. Please send me your complete kit and plans for assembling the S\&M all purpose tachometer. I understond that if I am not completely satisfied, I may refurn the kit wlthin 10 days for a complete refund.

NAME

ADDRESS

CITY, ZONE, STATE .........................................

## BUILD 20 RADIO CIRCUITS AT HOME <br> with the New Deluxe PROGRESSIVE RADIO "EDU-KIT"'\$ <br> A Practical Homn Radio Courso <br> ONLY <br> $\star$ No Knowledge of Radlo Necessary * No Addiṭlonal París or Tools Needed

* Excellent backgrouno for tV
* Scheol Inquirles Invited
* Sold in 79 Countries

YOU DON'T HAVE TO SPEND hundreds of dollars for a radio course

## PROGRESSIVE TEACHING METHOD

and ls universally accepted as the standard in the field of electronics tratining. The "Edukearn sehematics, studern educational principle of "Learn by Doing." Therefore you construct, gram designed to provide an eashy-learned thorough and interesting bachground in radio. You begin by examining the various radlo parts of the "Edu-Klt." You then learn the
function, theory and wiring of these parts. Then you bull Elmple radio. With fhil first set you will enjoy llatening to regular broadeayt stations, learn theory. practice testing and trouble-shooting. Then you build more advanced radio, learn more advanced theory and techniques. Gradually. in a progressive manner, and at your own rate, you wlll professional Radio Technician,
slgnal Tracer. Square wave Genorater and signaly Receiver, Tranamitter, Code Oacilatori, sional "breadboard". experiments, but genuline radio circults, constructed by means of profesalonal wiring and soldering on metal chasals, plus the new method of radio construce

## THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructons necessary to build 20 dimerent radio and elec: tronics circuts, eableguaranteed ceramie and paper diclectric condensers, resigtors, tle strips, colls, hardware, tubing, punched metal chassis, instruction
In addition, you recelve Printed Circut materiels. Including printed Circuit chassis,
pecial tube sockets. hardware and instructions. You also receive a useful set of bools. protesional lectrle soldering Iron, and a self-powered Dynamic Radio and Electronics Tester. The "Edu-kit" miso Ineludes Code instructrons and the Progressive Code Oscillator. in addition $0^{\circ}{ }^{\circ}$. C. C. -type Questlong and Answers for Radio Amateur Lleense training. You
will also recelve fessons for sericing with the Progressive Signal Toster and the Progres. sive signal injector, a Migh Fldelity Quide and a Quit Book. You receive Membershsp in
Radio-TV Club. Free Consultation Service. Certificate of Merit and Discount Privlieges.
You recelve ali parts, tools, instructions, ete. Everything is yours to keep.

## FREE EXTRAS

## SET OF TOOLS

## SOLDERING IRON

ELECTRONICS TESTER PLIERS-CNTTERS WRENCH SET VALUABLE DISCOUNT CARD CERTIFICATE OF MERIT HIGM FIDEGITY GUIDE MANUGLZES TROUBLE-SMOOTING BOOXO MEMBERSHIP IN RADIO.TV CLUB: AMATEUR LICENSE TRAINING PRINTED CIRCUITRY

## SERVICING LESSONS



## FROM OUR MAIL BAG

bury. Conn. Cof 25 Poplar Ples: Water several sets for my friends and made was ready to spend 5240 for a Course. Kit, Ben Valerio, $P$. 0 . Box 21, Magna Utah: "The Edunkis are wonderful. Here the answers for them. I have been In to work with Radlo Kits, and like to build Radio Testing Equipment. It en. joyed evt kile the signal Tracer works
dine. Also like to let you know that il fine. Also like to let you know that 1 Radio-TV Club. Huntington, W. Va.t "Thought i would drop you a few ilnes to say that i re-
ceived my Eduokit, and was really amazed ceived my Eduokit, and was really amazed that price, I have already tharted re friend were really surprised to see me troubleshooting Tester that comes. with the kit is really, swell. and find : the

## PRINTED CIRCUITRY

At no increase in price, the "Edu-Kit now includes Printed Clrcultry. You bulld a Printed Circult Signal Injector, a unique servicink Instrument that can detect many Radio and TV troubles. This revolutionary new technique of radio construction is now becoming popular in commercial radio and TV sets. A Printed Circult is apeclal Insulated chassls on which has been de. posited a conducting materlal which parts are merely plugetod in and soldered o terminals.

Printed Circuitry is the basis of modern Automation Electronies. A knowl. edge of this subject is a necessity today for anyone Interested In Electronics.

## UNCONDITIONAL MONEY-BACK GUARANTEE ${ }^{--}$



operation 12 VDC
and 250 VDC 60 Na. Can be used for mobile or home NaFy \#CMX-50198 ${ }^{7} 0^{\prime \prime}$. Wh. 15 lbs. tith Pilice-Coniplete with $3 / 12 A 6$ Tubes (1 ©295 Price-With I2 Volt Dynamotor. . $\$ 6.95$
 top and instructor. and instruction book. Volt-

## MAGNAVOX AUDIO AMPLIFIER

Alfe for the Nary for Interconimunteation sind ampli. fleation of radia signals. Uses 2/19A6 tubes In pushi-pull; also lifgls quality input trabsformer for carbon micruphone. and leceiver input-autput transformer has varlable control for lieadset or speaber. Also mounting for


MAIL COUPON FOR CATALOG!

## FAIB RADIO SAIMS 2133 ELIDA RD. - BOX 1105 - LIMA, OHIO

## FAIR RADIO SALES

Dept. 18-P. O. Bor 1105-Lima, Ohio-U.S.A.
Please rusb me your curreat FREE CATALOG:
NAME: $\qquad$ ADDRESS:
$\qquad$

## FARM



## TELEPHONE

 CABINETSSlightly used crank style CABINETS (once used everywhere) for Home Hobby Shops. Complete with trans mitter, receiver, bells, crank and shelf (Less Generntor). Has all of the outside parts. Make beautiful, unique Radlo Cabinets, Liquor Chests, Spice Cabinets, Flower Planters, etc. Immediate deliveries assured. $\$ 10.00$, F.O.B. Chicago.

## TELEPHONE

## HANDSETS

Use as inter-house phone, talk house to garage, as loud speaker system, etc. You recelve transmitter, recelver, 3 conductor cord and simplified, illustrated Installation diagrams. Handsets are guaranteed to be the same as used in our great National Telephone System. Price delivered $\$ 2.95$. Two for $\$ 5.00$ :
TELEPHONE REPAIR AND SUPPLY CO.
Dept. BB. 8
1760 Lunt Ave., Chieago 26


# New Model 161 UTILITY TESTER ${ }^{\oplus}$ 



As an electrical trouble shooter the Model 161:

- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Will rest all TV tubes (including picfure fubes) for open filaments and burned out tubes.
- Measures A.C. and D.C. Voltages,
(800h 110 Volf and 220 Volt lines).
- will measure current consump. tion (amperes) while the appliance under lest is in operation.
- Incorporates a sensifive directo reading resistance range which will measure all resistances commonly used in electrical appliances, motors, etc.


## As an Automotive Tester the Model 161 will test:

- Both 6 Valt and 12 Volt Storage Batteries - Generators - Starters Distributors - Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs - Fuses - Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poor connections, ete.



## INCLUDED FREE!

This 56 -page-book-practically a sondensed sourse in electricity. tearn by doing.
Just read the following partial list. of contents:

- What is electrictis? - Simplined verston of Onms Law what is wattage? - S1mplined wattege age current. reststance and leakase o How to test ail electrical appliances and motors ustng a simpilined trouble-shooting technque.
- How to test all TV tubes; also slanple procedure for determining which specinc tube (or tubes) is causing the trouble.
- How to trace trouble in the electricel circuts and parts in automobiles and trucks.

Model 161 comes complete with obove book and test
leods. Only
$\qquad$

## NOW. . . AMAZING METHODS REVEAL DISGUIISED HYPNOSIS

LEARN THESE SENSATIONAL TECHNIQUES \& TRICKS TO CAUSE THE TRANCE WITHOUT SUBJECT'S KNOWLEDGE! Revealing manuscript tells jealously guarded secret techniques used to cause the "Indrect Trance." Read how subjects are hypnotized without their knowledge. Learn amazing tricks and shortcuts that make hypnosis fast and easy. Discover the safe "fake nerve pressure" technique , the "falling back" test
and many others. Read how the author hypnotizes n ruomful of people without their knowledge-using a common household cooking ingredient. This is so dramatic and effective it is worth FREE! prder nuw and Get these FREF EXTRA nosis" and a clever Hypnotic "Trance-Fer" chart. Trance." All in a plain wrapper only $\$ 1.98 \mathrm{ppd}$. Money back if not dellghted.
ALLIED-AIOS, DEPt. D-34, 1133 BROADWAY, NEW YORK 10, N. Y.


## TEN <br> delightful, exciting MOVIES

FANTASTIC OFFER ALL TEN MOVIES IN 8 mm FOR ONLY ( $16 \mathrm{~mm}-\$ 4$ ) The movie buy of a lifetimel Ten subjects, all different. brand new and thrilling, and all yours for only 20 c each. You must be delighted or your money back! Rush $\$ 2$ (cash. check or money order) to: SENSATIONAL MOVIE OFFER Box 69856, Dept. G-3 West Hollywood 69, Calif.

194Do It Yourself Plans $\frac{\text { ILLUSTRATED CATALOG }}{\text { NOW YOU CAN get simple, easy-to- }} 25$ NOW YOU CAN get simple, easy-to-
understand plans for building boats, electrical equipment, models of gas and steam engines, famous firearms, antique autos, toys, cabin trailers-a complete listing of every plan published by Science and Mechanics. In all, 194 useful things you can build. It's easy! It's fun! And you can save moneyl Send 25 c now. (Refundable first order). Science and Mechanits MagazIne , Dept. 2000, 505 PARK AVE., NEW YORK 22. N, Y.


## DID YOU HEAR THE NEWS?

SEE PAGE 148

In One Evening


Minimum cost-maximum performance. You get both in "Minimax." Built in one day at a cost of about $\$ 20.00$, it will carry 2 people, take outboard motors ranging from 3 to 15 hp . and has a water-tight air compartment that will support 900 lbs . even with the cockpit completely filled with water. As to performance, "Minimax" will plane a 165 lb . man up to 15 mph . with a 3 hp . outboard motor. With 10 hp . and over, the hull planing area diminishes until "Minimax" becomes air-borne and rides upon the motor's cavitation plate. Length 8 ft . Beam, 4 ft . Weight 68 lbs. It's easy to build.
SEND FOR COMPLETE
PLANS NOW - ONLY
\$2으


## NOW! EARN MONEY IN TV SERVICING WIthin one short week

## Make \$5 to \$10 Per Call IMMEDIATELY

Here is the announcement our Engineering Staff has waited 5 years to make! Here is the final "break-through" in the television industry's giant efforts to perfect a simplified TV servicing system that eliminates the need for expensive training and long study! If you've thought about learning TV Service and Repair ... if you've awaited any opportunity to have a prosperous, secure business of your own, then this is possibly the most important bulletin you'll ever read!

## WHAT IS THE AMAZING MEW symtronic traning method

 symtronic is a dynamic new concept based on the known fact that only 8 certait number of things can go wrong with any given set. For the first time these troubles, and their causes, have been isolated into three main groups. Through a comprehensive, but easily understood crossindexing system it's now possible to pinpoint the trouble in one of the 3 groups in a matter of seconds! What prevtously required long schooling is now avallable to you immediately throush the amazing Symtronic Sys tem. Our Free Sample Lesson shows how the Symtronic Method will work on your ow'n set, or a iflend's. Write for it today!
## CUTS STUDY TIME EXPENSE

You want to get started servicing TV sets, not building them! So why spend long months studying under old fashloned, outdated methods ini learning things you'll never use? Why buy lots of equipment to practice with when you don't need tt? With the Symtrontc System the COMPLICATED TECHNICAL THEORY IS ALREADY TAKEN CARE OF BY OUREADY SCIENTISTS! There is nothing more you need in this line. What we give you is practical down-to-earth ke give you is practica, down-to-earth knowhow based on our many years of solid. scientific experience! Our revolutionary Symtronic methods let you compete tmmediately with servicemen who have had years of experlence!

## COMPLETE SYMTRONIC BUSIMESS PLAN

To make our training program the most practical svillable, we also offer a complete Business Plan developed by leading advertising and business consultants. Step-by-step, you learn how to get business, how to operate from your home, how to charge how to keep records etc. harge, how to reep records, etc. - a complete fully how to start, conduct, and ex-

## CASH IN ON THIS BIG PROFIT BIG FUTURE INDUSTRYI

IV servicing is a multi-milition dollar industry and it's growing like wildfire! To keep pace, thousands of qualified Servicemen are urgently needed each year. The pay is big and there's no limit to your future success. Television ts here to stayl In this held, too, you get pald for what you accomplish, not how long you work. $\$ 5$ to $\$ 10$ per call is the usual service charge. . even though the job may charge
take onig a few minutes! Add to this the oniy a few minutes! Add to this the almost $100 \%$ proft on tubes and parts and you can easlly see how Symtronic can put you into the ble money practically overalght!

## SYMTRONIC PUTS YOU IN <br> YOUR OWN BUSINESS NOWI

Imagine - with our amazlng training method you know everything meeded to handle any make of TV set, within to hande any make of TV set, within one short week! And without buytns any expensitve tools or equipment. You learn at home - spare time. A lew evenings of lascinating reading is all it takes. This is fact. . . not fiction. In Just days or less you wlll have suffcient knowledge and abllity, and confidence in yourself, to make from \$5 to $\$ 10$ per service call - earn $\$ 150$ a week, working out of your home! Here, unquestionably, is your chance of a lifetime to get into the booming TV business to enjoy the freedom and security that comes with a successful business of sour own!

## PROVIDES "BLUEPRINT TO SUCEESS"

pand your own TV Service Business. In short, we not only offer the most streamlined, effective TV training avallable but a tested and proved avainabse but a tested and proved Business Plan that eliminates sil guesswork. Here, surely, is a "Business Package" that may easlly bring you all the good things you desire of practical education with lifetime

## 100's of customers af $4 c$ each?



> THIS COMPLETE MAIL.ORDER PROMOTION KIT PUTS YOU IN A PROFITABLE TV REPAIR BUSINES THE VERY FIRST WEEK!

No soliciting, No personal selling. No overhead. This amazing "business-th-a-package" Kit puts you in direct contact with every TV set owner in your area! May bring cash orders immediately, bullds a fast-growing list of steady customers to make you independent1
No extra cost. Complete Kit included with Course. Contalns everything you need to put Plan into operation, the same day you get it. No advertlsing expense except stamps.
Most successful business-bullder in TV history. Gives prospects an irresistible resson for calling YOU when they need help-makes it impossible to forget you. Nothing like it on the market.
Entire promotion carrled on by mall so you can control the flow of business to meet your personal needs. Use small malling for part-time bustness without quitting your present fob. Larger malling bring more customers for full-time business. No personal selling. Spend all your time making money!

TV Repalr Systems, Dept. H-872, 1038 S. La Brea Ave,- Los Angeles 19, Callf.


Gef these 3 valuable pleces
ABSOLUTELY FREE!!!


1. "HOW TO LEARN TV REPAIR FAST (overnight)". A real eye-opener that reveals how the amazing Symtronic method puts you in this big-pay field right now!
2. AMAZING SAMPLE LESSON proves how the Symtronic method really works. Convinees yourself by repairing your set -or a friends-the very first doy!
3. "HOW TO GET 200-1000 REGULAR CUSTOMERS FAST (less than 1 week)' See the secret workings of the "Business-in-a-Package" mail plan that does all your selling for you!
These three big gifts can be worth hundreds of times the tiny $4 ¢$ stamp it takes you to get them. Yet they are yours to keep forever-with no obligation.

ALL FREE-AIRMAIL COUPON TODAY

TV Servicing Systems, Dept. H-872
1038 S. La Brea Avenue
Los Angeles 19, California
Please rush proof that your Symtronic Method is all you claim, and information on how I can have my own TV Repair business with customers calling me within o week. Be sure to include all 3 FREE items mentioned.

Name.

Street

City
Zone__State

## ON SALE - Feb. 6 th



1962 EDITION

| Workshop Kinks |  |
| :---: | :---: |
| Cor Servising |  |
| Home Maintenance |  |
| Painting-Decorating |  |
| Yard-Lawn Care |  |
| Homemaking Hints |  |
| Radio-TV Upkeep |  |
| Electrical Repairs |  |
| Photographic Aids |  |
| Boating Tips |  |
| Hunting-Fishing |  |
| Hobby Helps |  |
| 1001 ingenious ways to save time, temper, work, and money |  |



## SO EASY IT'S SHOCKING, IF YOU USE ENLARGED PLANS

to bulld electronic profects. Enlarged size, step-bystep craft print plans-complete with detalled materials lists-are avallable for the following:
191. TESLA COIL. Produces 70.000 volts at $500,000 \mathrm{cDs}$. Spectacular but safe................................................... 81.00 227. REPULSION COIL. Defles law of sravity-electromagnetically .. ............................................................81.00 243. DEMO ELECTRIC MOTORS. Plans for both windmill and englat types..................................................... 81.50 251. SOLAR BATTERY AND MOTOR. Battery"s volt at 180 258. SUN-POWERED RELAY. Light-activated control with a varlety of practical applications................................. $\$ 1.00$ 264. HI-FI FM RECORD PLAYER. Phono osclliator, arm and turntable for hi-h reproduction................................... 81.00 265. ELECTRICAL COIL-WINDING MACHINE. Motor-powered with loot-concrolled reactor................................ $\$ 1.00$ 279. WIMSHURST STATIC MACHINE. Constant source of etatic electrictty.......................................................... 81.50 283. VAN DE GRAAFF GENERATOR. Costs 830 to bultd. Produces up to 250,000 volts......................................... 81.50 301. VAN DE GRAAFF GENERATOR. Produces up to 400.000 volts. This is the apparatus that can stand your hair on end 81.50
-. SAVE MONEY! yf you order two or more crath res. SAVE MONEY! prints, deduct 256 from the regular price of each print. Thui, zor two printh, deduct sot;
 guaranteed or money back.


ADDRESS
CITY \& ZONE

STATEHere's 20e. Ploase send me your Ilfustrated catalo of 290 eraft print plans.

COMPLETE SERVICE TRAINING . . . written so you can understand it!


# Fix any TV or Radio Ever Made 

## EASIER - BETTER - FASTER!

No complicated theory or mathematical These famous Ghirardi books get right down to brass tacks in showing you how to handle all types of AM, FM and TV service work by approved professional methods. Almosi 1500 sarvice work by approved llustrations show how to handle every pbase of troubleshooting and servicing. Each book ls co-authored by A. A, Ghirardi whose manuals have helped train more servicemen than any other book of courses of their kind!

## 1-Radio and Television Receiver TROUBLESHOOTING AND REPAIR

A complete gulde to profitable protessional methods. For the beginaer, it is a comprehensive training course. For the experienced serviceman. It is a quick way to "brush up" on specific jobs, to develop improved techniques or to find fast answers to puzzlisg service problems, Includes invaluable "atep-by-step" troubleshooting charts that show what to look for and where 820 pages, 417 illustrations. Price $\$ 10.00$ separately.

## 2-Radio and Television Receiver CIRCUITRY AND OPERATION

This 669 -page volume is the ideal guide for servicemen who realize it pays to know what really makes modern radio-TV receivers "tick" and why. Gives a complete understanding of basic circults and circuit variations; how to recognize them at a glance: how to eliminate guesswork and useless testing in servicing them. 417 Hlus. Price separately $\$ 9.00$.

## Special low prise <br> . . . you save \$2.00

If broken toto leseons and ment to you as a "course," you"d remard Unese two Ereat books ss a barkath at $\$ 100$ or more!
Under the offer, you buy both books for onily $\$ 17.00$. No
lesson to walt for, you learn fast-and right!

## --=-sTUDY 10 DAYS FREE!-=- <br> DEDL. MM.22, MOLT, RINEMART \& WINSTON, INC.

Technical Dlv., 383 Madison Ave.e
628900
Send books below ror 10 -day Friee EXAMINATION. In 10 days I will elther remit price indicate

- RAdio \& TV Recelver TROUBLESHOOTING \& REPAIR (Price
- Radio \& TV CIRCUITRY \& OPERATION (\$9.00) \$708214
$\square$ Check here for MONEY-SAVING COMBINATION OFFER [ Save $\$ 2.00$. Send both of above blg bookg at spectal you save $\$ 2.00.)^{2} 709006$

SAVEI Send cosh with order and we pay postage. Same return privilege with money promptly refunded.
I Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clty. Zone, state. . . . . . . . . . . . . . ..............................
Outstde U.S.A. 510.50 for TROURLESHOOTING d REPAIR;
S9.SO for CIRCUITRY OPERATION: only, but money refunded if you return 800 ks in 10 davs. Cast
-

## Coming in the Aprillssue



Test Report
OLDS
F-85
cullass

## Checking-Out the

## FALCON SQUIRE

"The monthly magazine for craftsmen"
. . . with these HOW-TO-DO-IT articles with step-by-step instructions
Four Ways to Build with Stone

## Portable Burglar Alarm

Car Servicing:
Installing Motorola's New Electronic Alternator

> On Sale Feb. 27 th AT All NEWSStands



GENERATORS NOW-4 Models- 150,000 250,000 and 400,000 VOLTS plus new sub-miniature

Complete Kits 150.000 VOLT MODEL....... $\$ 27.95 \mathrm{PP}$. 250,000 VOLT MODEL....... 32.95 PP. Also Plastic Materials for: - REPULSION COIL ........... $\$ 4.00$ - MNIATURE TESLA COM....... ${ }_{24} 1.00$ - SOUPED UP TESLA COIL, - WUMSHURST STATIC MACR.... 20.00 - TUPABO GENERATOR KET........ 4.50 - OPAQUE PRONBCTOR CIAMBER..... 9.50 - SUB-MIN. GENERATOR .... 3.95 \& 4.95 - VACUUM CHASIBER KIT'. 9.00 \& 11.50

## FOREST PRODUCTS, INC.

Dopt. RT-II
Cambridge, Massachusefts

## PORT ARTHUR COLLEGE ELECTRONICS COMMUNICATIONS

## AM FM Television Broadcast Engineering

 Industrial Electronics-Automation Check these features: Tuition $\$ 40$ per mo., room \& board $\$ 60$ per mo. in dorm on campus. College operates 5 KW broadcast station. Students get on-the-job training at studios on campus. FCC license training with all courses. Well equipped classrooms \& lab., am frim transmitters, radar \& marine eqmit., television camera chaln, experiment lab test eqmt. \& other training aids. Our graduates in demand at good salaries. Free placement service. Have trained men from all 50 states. Approved for GI. Write to Dept. RT-1 for Free Booklet.PORT ARTHUR COLLEGE Port Arthur


Depl. ATY, 1012 McGee St., Kansas City 6, Mo. $\square$ Rush me New 1962 B-A Cotalog No. 621
1 Name...

Address.
Cly

## 20 Prize Winning Science Fair Projects <br> 

## Step-by-sfep science show how

Demonstrating Bernoulli's Principle Experiments with Glow Discharges - Bullding your own transit level

- Exciting Chemiluminescence Experiments
- Stretching the radio spectrum with Laser A simple electric bell
Experimenting with rockets
Infrared detectors
- Incredible world of $-320^{\circ} \mathrm{F}$

Building an ION Exchange fuel cell

- Hunting insects with a butterfly gun
- Midget Van de Graaff generator
- The mathematics of music
- Home bullt spectrograph
- Sound searching parabolic mike
- Experimenting with ultra-violet
- Remote reading weather indicator

Science and Mechanics Magazine, Handbook Div.. Dept. 3000, 505 Park Avenue, New York 22, N. Y.
Enclosed is $\$ 1.00$, please send me my copy of Science Experimenter-586
| Name . ................................................. |
Address . ..................................................
| City ........................Zone... State..........

## Speecill Sille

## our most popular electrical and electronic projects



1006 Electric Chord Drgan

## SPECTACULAR OFFER! TWO FOR ONLY \$1.00

## 1000 TRANSISTOR TAPE RECORDER

Instant action is yours with this specially designed battery powered transistorized tape recorder, Standard' playback speed allows tapes to play in any unit or through its own mike speaker. Buite tn jack plug permits recording directly from radio or TV. 75 e
100335 MM COLOR SLIDE PROJECTOR
Brilllant color pictures of your 35 mm transparencles with twice the area size of most commercial projectors ara yours with this unit. A fuster lens speed means no costly cooling system and operation with a 100 watt bulb. Yet entire projector will cost less than $\$ 12.00$ to bulld. 75 e 1005 MINIATURE ELECTRONIC SPEEDFLASH
Costs only $\$ 26$ to build but will outperform commercial units costing three times as much. It supplies ideal lightuses either AC or buiteries. Its lump buth in dessign and flushes and recycles in two seconds completely elliniuating flash bulb fumbling. 75
1006 ELECTRIC CHORD ORGAN
One used accordion, a blower and some straple cublnetry produces a full quality musical tone instrument outperforming $\$ 250$ commercial units. It combines a treble and bass blender and a fout pedal volume comtrol with the fast responsive action of the accordion keybuard. Tukes only a few evenin'ss to build. 75
1010 ALL PURPOSE TESTING MULTI LAB
This home lab will test and match electronic parts, meas. ure water's chlorine content, match paint, analyze color photo lightlag, check suil pli. lt's a colorimeter. densitometer, emergency fire and burglar alarm, photometer electronic micrometer, remote thermometer and-well you name it. Costs about $\$ 25$ to build and can be wired by a novice. 75 c
1018 MODEL HYDRO ELECTRIC PLANT
With a few inexpenslve materlals at home, you can build your own minfature hydroelectric plant. Using only the water pressure from the faucet in your own slak, you can generate enough electricity to light a small lamp, play a transistur radio and stepped up even provide $110-\mathrm{v}$ curtent. 75

## SAVE MONEY!

Price of first blueprint, $75 \$$; each additional blueprint ordered at the same lime only 25 each.

-     -         -             - RUSH THIS ORDER FORM - - - - -

Science and Mechanics Magazine,
Craffprint Division. Dept. 2217
505 Park Avenue, New York 22, N. Y.
Enclosed is $\mathbf{5}$........ Please send the blueprints whome numbers 1 have circled below;
$\begin{array}{llllll}1000 & 1003 & 1005 & 1006 & 1010 & 1018\end{array}$
Name
Address
Clty, Zone and State.
Satisfaction Guaranteed or your maney beck


## To guide you to a successful future in

ELECTRONICS RADIO-TV COMPUTERS ELECTRICAL ENGINEERING

This interesting pictorial bookiet tells you how you can prepare for a dynancic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:
MISSILES AVIONICS AUTOMATION SALES - DEVELOPMENT ELECTRICAL POWER - ROCKETRY RADAR - RESEARCH
Get all the facts about job opportunities. length of study, courses offered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwaukee School of Engineering's educational and recreational facilities, No obligation - it's yours free.

## MILWAUKEE SCHOOL OF ENGINEERING

## MAIL COUPON TODAY!

Milwaykee School of Engineering
Depl. RTKog6 1025 N. Mllwaukee St., Milwaukee, Wis. Please send FREE "Your Career" booklet I'm interested in
$\square$ Electronics $\square$ Radio-TV Computers
$\square$ Electrical Engineering Mechanical Eagineering
Name Age
Address
City. $\qquad$ Zone $\qquad$ State.
I'm eligible for veterans education benefits. Discharge date
m 5.117

## ON SALE - Matr. 6th

## at most newsstands



## Astrophotography

## Experimental

Ray Tracer

## Satellite Computer

## Multi-Testing Lab

## 25 winning Science Fair Projects

Pick up a copy at your newsstand or send $\$ 1.00$ including postage with coupon below

## SCIENCE AND MECHANICS MAGAZINE

Dept. 3000, 505 Park Avenue
New York 22, New York
Enclosed is $\$ 1.00$ : please send me my copy of Science Fair Projects-594

[^1]
## CONTAINS

—. What Makes a Winning Science Project?

- Miero-Illuminator
- Learn with an Orrery
- Supersensitive Light Meter
- Cartesian Diver like Seuba Diver
- The Eerie Threat of Weightlessness
- Crater Treasures from the Skies
- Multi-Lab Reflection Densitometer
- Multi-Lab Colorimeter
- What Hands Can Reveal
_ Solar Hot Dog Cooker
- Engineer's Level
- Electrostatic Dust Precipitator
- Midget Oudin-Tesla Coil
- Electrolytic Tank Experiments
- Motor-Rheostat Rig
- Black Light's Scientific Career
- Thermoelectric Conversion
- Solar-Powered Car
- Inexpensive Microtomes
- Accurate Chemical Balance
- Experimental Ray Tracer
__ Wimshurst Static Machine
_Talking Coils
_ Basement Ballistics
_ High-Voltage Traveling Arc
- Making and Using Permanent Magnets - Magnetic Pendulum



NAME $\qquad$ ADORESS $\qquad$

CITY $\qquad$ 2OHE $\qquad$ state

## ON SALE Jan.2nd at most newsstands



Complefe step-by-step how-fo for repairing household appliances

- Control Oven Temperature
- Cure Balky Mixers
- Pick Up Vacuum Cleaners
- Fix Hot Air Gas Furnaces
- Repair Run Down Water Heaters
- Overhaul Appliance Motors
- Repair Electric Table Appliances
- Order Replacement Parts
- Check Your Incinerator
- Keep Food Waste Disposer Running
- Check Electrical Wiring
- Save Money When Calling Serviceman
- Keep Automatic Washer Humming

Pick up a copy at your newsstand or send $\$ 1.00$ with coupon below



## Complete plans for 40 Home Electrical Projects

$\star$ How to Buy a Room Air Conditioner

* Modernizing Old Vacuum Cleaners
$\star$ Servicing Electric Clocks
* First Aid for Ventilating Fans

On sale at your newsstand or send $\$ 1.00$ with coupon below for your copy

[^2]
## Experimenters: Talke Your Pidh

## SPECIAL OFFER

BACK-ISSUE BARGAINS! FIVE FOR ONLY \$2.50



These back issues of the RADIO-TV EXPERIMENTER are still available:

551 Includes sun-cell TRF recelver, plans for experl. menter's test bench, decade ohm box, electronic tic-tactoe, splt-powered osclllator photoelectric controls, signal tracer, portable hi-fी record playet, single-tube organ. Single copy. 754

562 Contalns 53 make-lt yourself profects: transistorzed Intercom, Citizens Band 2-way radio, 7 -tube FM tuner 6 -meter ham rig, suncelled motor, stereo music center. Single copy, 756

56937 Electronic projectsamong them a complete twomoter ham station-a transis tor analyzer, an economy frequency standard, a two-tube long wave recelver, a musical annunciator, typacode, and a wireless intercom, 75

576 Includes VHF recelver, transistor tester, volt ohmmeter, mult! lab, telephone sentry, opinjon meter, making transformers, parabolic mike battery recharcer fleld strength Indicator-33 different projects, 754
582 Contains over $3^{35}$ electronic projects including 5 way $\$ 5$ radio: 1 transistor tuner ; 2 transistor amplifier underwater metal finder home hl-fl reverb system plus the latest expanded edition of White's Radio Log, $75 \%$

## RUSH COUPON TODAY

Satisfaction guaranteed
SCIENCE AYD MECHANICS, Handbook Division Dept. 3000, 505 Park Ave., New York 22, N. Y.

Finclosed iss.
Please send mo:
All FIVE of the Experiments for $\$ 2.50$. The TWO Experimenters circled for $\$ 1.00$. The circled ismue at single copy price of 754 .
$\begin{array}{lllll}551 & 562 & 569 & 576 & 582\end{array}$
NAME
ADDRESS ..........
CItY . . . . . . . . . . . . . . . . . . . . . . . . . . . . zone . . . . . . . .

STATE
$\square=$

## BUILD-YOUR-OWN

 ELECTRONICS FOR MODERN LIVINGIT'S FUN...IT'S EASY WITH MONEY-SAVING knight-kits (1)


Dozens of now hobbyisi khts, Ineluding amazing Electronic Sclence Lab-over 100 projects


Everything in stereo hl-fl components now Multiplex Stereo
FM funers

4 featured in the 444 page 1962 ALLIED ELECTRONICS CATALOG

## Cras send for il!

Select from more than 70 exciting Knight-Kits! See-Stereo hi-fi, including new Multiplex Stereo tuners and all-transistor amplifiers, short-wave radios. intercoms, Citizens Band radios, electronic science labs, test instruments-all easy to build and a pleasure to own! Send today for your FREE 1962 allied Catalog!


New-tachometer kit and outstanding test instruments


New all-transistor Intercom: many other blits for modern living

## SAVE ON EVERYTHING IN ELECTRONICS



Get the mast for your money in: Stereo hi-fi system: and components - Recorders and tope - Citizens Bond radios. Amoteur spation equipment - TV tubes, antennas, acessories. Electronic parts, fubes, fransispors, tools, test instruments, books. Send foday for your FREE 444-page 1962 ALLIED catalog!

NO MONEY DOWN Easlest Terms


ALIIED RADIO, Depl. 64-C2
100 N. Western Ave., Chicogo 80, III.
WORLD'S
Rush FREE 1962 ALLIED Catalog
BIGGEST

## Name

pleabe print

## Address

City $\qquad$ Zone $\qquad$ State $\qquad$


Qty. Type Price ${ }^{\text {Oty. Type Price }}$ Oty. Type Price

| Qty. Type | Price | Qty. Type | Price | Qty. Type | ice |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 024 | . 79 | 5C08 | . 84 | CBN6 | 74 |
| 1 Ax2 | . 62 | 5C25* | . 72 | 6B06 | 1.05 |
| 183 | . 79 | 5 EA8 | . 80 | 6807 | 1.00 |
| 10N5 | . 55 | 5EU8 | . 80 | 6B58 | . 90 |
| 163* | . 79 | 516 | . 68 | 6808 | 70 |
| 113* | . 79 | _-518 | . 81 | $6 \mathrm{BX7}$ | 1.02 |
| $1 \mathrm{~K} 3^{\circ}$ | . 79 | - 504 | . 60 | $6 \mathrm{BY5}$ | 1.15 |
| IR5 | . 62 | 508 | . 81 | 68Y6 | . 54 |
| 154 | . 59 | 5V3 | . 90 | 6BY8 | . 66 |
| 155 | . 51 | 5V6 | . 56 | 6826 | . 55 |
| 174 | . 58 | $5 \times 8$ | . 78 | 6827 | 1.01 |
| 104 | . 57 | 5 Y 3 | 46 | 6828 | 1.09 |
| 105 | . 50 | -6A8G | 1.20 | ${ }_{6 C 4}$ | . 43 |
| 1)28 | . 82 | _6AB4 | . 46 | 6CB6 | . 55 |
| 2AF4 | . 96 | -6AC7 | . 96 | 6 606 | 1.42 |
| 2BN4 | . 64 | 6AF3 | 73 | 6CE5* | . 57 |



## 2EN5*

Popular New Tubie Types Offered by Rad.Tel*

-3C
3
$-\quad 3$
$-\quad 3$
$\qquad$
$\begin{array}{r}5 B \\ -\quad 5 \\ \hline\end{array}$
-5C6
-5CM8*
 Up to $75 \%$ OFf



Qty. Type Price ${ }^{\text {aty. Type }}$ Price ${ }^{\text {Oty. Type }}$ Price

| H5 | . 58 | - 12AQ5 | . 60 | -1238 | . 8 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6 J 5$ | . 51 | 12A1 | 43 | 12K5 | 65 |
| SI6 | . 67 | 12AT7 | 76 | 12 L 6 | . 58 |
| 6 K 6 | . 63 | 12AU6 | . 51 | 12SA7 | . 92 |
| SL6 | 1.06 | 12aU7 | . 60 | 12SF7 | . 69 |
| 6 N 7 | . 98 | 12AV6 | .41 | 125H7 | 49 |
| $6 \$ 4$ | . 51 | 12AV7 | . 75 | 12517 | . 67 |
| 6SA7GT | . 76 | 12ax4 | . 67 | 12 SK 7 | 74 |
| 6SG7GT | . 41 | - $12 \mathrm{AX7}$ | 63 | 12SL7 | 80 |
| 6SH7GT | . 49 | 12AY7 | 1.44 | 125N7 | 67 |
| 6517 | . 88 | 12A27 | . 86 | 12507 | . 78 |
| 6SK7G | . 74 | 1284 | . 63 | 1207 | . 62 |
| 6SLTGT | . 80 | 12BA7 | . 84 | 12V6 | . 53 |
| 6SN76 | . 65 | 12806 | . 50 | 12W6 | . 69 |
| 6507 | . 73 | 12BE6 | . 53 | $12 \times 4$ | . 38 |
| 614 | . 99 | 12BF6 | 44 | $17 \mathrm{~A} \times 4$ |  |

Popular New Tube Types Offered by Rad.Tel*


Complete power supply for transistor circuits and electrical experiments delivers 9 volts.

# Inexpensive Battery Pack To Test Transistor Units 

By FORREST H. FRANTZ Sr.

TIME spent by experimenters working the bugs out of newly-built transistorized units takes a lot out of expensive miniature batteries usually found in such equipment. Ordinary flashlight cells costing only one-tenth as much will do the same testing and adjusting job and last longer when arranged as in Fig. 1.
With six No. 2 (size D) birtteries, this versatile supply can handle most transistor circuit operating requirements by furnishing power in six steps from $11 / 2$ to 9 volts.

To Make the Power Supply, join three double battery holders together (Lafayette MS-176) by soldering terminal to terminal. Masonite or plywood backing will make the assembly rigid.

Join holder terminals on one end with a piece of wire, then insert batteries plus to minus as in Fig. 2. Install clips such as Mueller Mini-Gators on wire leads soldered to terminals at other end.

Clip one lead on the zero terminal and the other on the terminal which furnishes the voltage required by the equipment being
tested (Fig. 2). If you use the lower voltages frequently, interchange batteries or clip connections for longer overall battery life.

Determining Current Drain. To learn how much current your equipment is using, connect a milliammeter in series with the battery and piece of equipment as in Fig. 3. This arrangement is valuable in troubleshooting newly constructed equipment. A one-transistor earphone radio usually requires less than 1 milliamp. You can usually figure on less than 1 milliamp per transistor for all transistor stages except the output which drives a loudspeaker.
Current for a Class A output stage may be as little as 2 milliamps, but it is more likely to be between 5 and 15 milliamps. For a Class B audio output stage (two transistors in push-pull), it may hit between 50 and 100 milliamps on signal peaks. These figures are approximate and represent a relative guide for small transistors such as the CK722, 2N107, and 2N188A. Power transistors such as the 2 N 255 and 2 N 307 require much higher currents.

 timing and pace from the very start. Volume is ample for small group practice or can be cut down sa you just barely hear the clicks.

## TIMER Sets the BEAT

You don't have to watch a clock or push buttons with this $\$ 16$ electronic metronome-timer

By JOSEPH R. NOONAN

With the metronome clicking the exact beats per second, the advanced musician knows he's playing at the tempo indicated on the music sheat by the composer.

## 18: TH HO PO O O O O

music practice - rhythm calisthenics - dance practice gymnastics • high-speed typing

## and to time....

photo printing echem lab tests e tape recordings


CABINET DETALLS FOR TIMER

UNLIKE most clock-type timers that ring only once, the loudspeaker in this unit gives you a continuous audible check on elapsing time. Just set the range switch on $5,10,30$, or 60 seconds, and your hands and eyes are free to concentrate on the work.

The timer uses many standard parts that can be salvaged from old ac-dc radios. Your first step is to mount the tube sockets and pots on the chassis; P1 goes on the top side at the rear of the chassis while $P 2,3,4$, and 5 mount along the rear face. This circuit is the ac-dc type, and the chassis is not used as a ground. Therefore use two lug mounting strips at every spot where you need a tie point or support for the parts.

Filament resistor R1 dissipates considerable heat, so mount it on a 2-lug strip above chassis, with one of the output transformer mounting bolts. Run all the wires passing from above the chassis to the underside through one grommeted hole in front of the output transformer. Mount volume control switch P7-S1 and range selector switch S3 on the chassis front. Later when wiring is finished, a second mounting nut on these parts joins the chassis to the front plate of the cabinet, while the rear of the chassis fastens to the bottom plate with two sheet metal screws. Bolt capacitor C 4 by its feet to the inside front face of the chassis at the bottom.

Mount the selector switch S 2 , and the metronome pot P6 on the cabinet face. Bolt


On the seconds range, you get a click every 1, 5, 10, 30, or 60 seconds. Each range has its own control pot on the back of the chassis for calibration.
the speaker to the top of the cabinet and wire according to Figs. 5, 6 and 7. There are no special wiring cautions.

Operation of the Circuit depends on the action of tube VI (12AU7) as a multivibrator type oscillator. It generates a pulse heard as a "tick" from the speaker. Timing of the pulse is controlled by the values of the resistors and capacitors in the VI tube circuit. To vary this oscillation, you change the resistance values of the pots through which voltage is fed to the fixed-value capacitors.

Generated pulses are then fed to tube V2 (50C5) through capacitor C2 and volume control P7, and are amplified to speaker volume. Tube V3 (35W4) operates as a half wave rectifier to supply B plus for tubes V1 and V2.



Calibration is Next, after a wiring check. Turn S3 to "seconds" and S2 to the onesecond position. Turn the unit on with volume about half way up. You should hear ticks from the speaker in about 30 seconds. Allow a ten minute warm up period, and then use an electric clock second hand to adjust pot P1 until the click frequency is exactly one per second. Pot P1 is left in this position throughout the rest of the calibration.

Next turn S2 to the 5 second range and adjust P2 for a 5 second click interval. Repeat with P3 for 10 seconds, P4 for 30 seconds and P5 for 60 seconds. Probably the timer won't split seconds on the 60 second range. A $5 \%$ accuracy on the one second range means an error of plus or minus only $1 / 20$ of a second, while on the one minute range would account for an error of plus or minus 3 sec onds per minute.

Calibrating the Metronome. With P1 as previously adjusted so the speaker clicks exactly every second on the one second range, turn S3 to Metronome position. Adjust P6 until the timer ticks eighty per minute when the pointer points straight up. Then calibrate the dial on either side of center to cover a range of 40 to 208 clicks per minute. Pot P6 will cover down to 25 per minute and can be so calibrated if desired. If no use of this extended range will ever be made, a 1.5 megohm can be used instead of

Materials list-ELECTRONIC PULSE GENERATOR
No. Req. Size and Description RESISTORS
R1- 150 ohm, 10 -watt wire wound
R2-1200 ohm. 1 watt
R3- 150 ohm, $1 / 2$ watt
R4-470K, $1 / 2$ watt
R5, R6-100 R, $1 / 2$ wati
R7-270K, $1 / \mathrm{g}$ watt
R8-1 men, $1 / 2$ walt
R9-10 meg, $1 / 2$ watt
R10- $22 \mathrm{mej}, 1 / 2$ watt
POTENTIOMETERS
Pl- 500 K ohm IRC Q11-133
P2-5 megohm IRC Q11-141
P3, P4, P5- 10 megohm IRC Q11- 143
P6- 2.5 megohm IRC Q11-239 (or 1.5 megohm IRC Q11-138-See Text)
P7-500K ohm volume control with switch Sl CAPACITORS
Cl- $\mathbf{4 0 . 4 0 \mathrm { mfd } . 1 5 0}$ v. electrolytic (Lafayette C-126)
C2-. 001 mfd .600 y. molded by-pass (Lafayette C.500)
$\mathrm{C} 3-.01 \mathrm{mfd} .600 \mathrm{v}$. molded by-pass (Lafayette C.503)
C4—4 mfd. 150 v. ofl filled paper (Lafayette CF.115)
CHASSIS ITEMS
7 pin miniature tube socket (Cinch-Jones type 7W2A)
9 pin miniature tube socket (Cinch-Jones type 9W1)
$V 1-12 A U 7$ tube
V2-50C5 tube
V3-35W4 tube
TI-output transformer 2500 ohm to 3.2 ohm speaker (Lafayette TR-10)
S2-5 position rotary switch (Lafayette SW-78)
S3-2 position rotary swiftch (non-shorting type)
$4^{\prime \prime}$ PM speaker 3.2 ohm (Allied 81 P616)
line cord and plug
$53 / 4 \times 47 / 6 \times 11 / 2^{\prime \prime}$ chassis (Lafayette MC-174)
$M$ isc. pointer knobs, mounting strips, hook-up wire, etc.
the 2.5 megohm value to eliminate the low end and provide a wider spacing of the calibration marks.

## TROUBLE SHOOTING GUIDE

Symptom No click at any setting
Clicks but P1 will not calibrate at 1 second

Clicks but does not maintain calibration

Clicks but at erratic in. terval

Remedy
Check rectifier, C1. If R2 overheats, look for short in C1. Check for shorted or open capacitors, C3 and C4.
Too low a timing interval indicates R6 or R8 too high in resistance value, or that C3 or C4 are too large or are leaky.
Too high an interval indicates C3 or C4 or R6 or 88 too small in value.
Leaky capacitors C3 or C4. Change in resistance values from overheating may be due to restricted chassis ventilation or misplacement of parts.

Defective V1 tube. Poor contacts in S2 or S3. Defective P1. Occasional fluctuations may be caused by power line variations.


Amplifier connected to 6-in. speaker in bafle (output) and transistorized tuner (input).

## By FORREST H. FRANTZ Sr.

BY USING a ready-made, printed circuit, 3-transistor amplifier, (Lafayette PK 522, complete with transistors, $\$ 3.75$ ), the experimenter can avoid the headaches of wiring 12 or 13 resistors, 6 or 7 capacitors, 3 transistors, and an output transformer into an amplifier circuit. This saves not only time, but money.

The midget PA (public address) system in Fig. 1 won't bang off your ears with its maximum power output of 100 milliwatts, but the output signal will drive a single 8 -ohm speaker, $3-4$-ohm speaker, or two 3 -4-ohm speakers connected in series. The power supply is a self-contained 9 -volt battery.

It has two input channels (Fig. 2), and can use either a mike and record player, two mikes, a mike and radio tuner, or a tuner and record player. You may even want to fade music and make announcements with a musical background.

The PA system amplifier will accept any high or medium impedance input device such as a crystal microphone, a crystal phono pickup, a crystal guitar pickup, a vacuum tube


Closeup view showing input and output jacks.

## Midget

# Public Address System Amplifier 


#### Abstract

An excellent project for the beginning or advanced experimenter which can be built for less than $\$ 10$ in a few hours' time


tuner, a crystal diode tuner, or a transistorized tuner. The input device must be terminated in a phono plug (Lafayette MS-471) to connect to the amplifier.
The mike in Figs. 1 and 3 happens to be one that goes with my tape recorder. Any crystal mike listed in the Allied or Lafayette catalogs will work sufficiently, but a high output crystal mike such as Lafayette PA-76 rated as -44 db will permit you to realize more volume than a mike rated at $-52 d b$.
Drill the Front of the Case as in Fig. 4. Remove the screws packed inside the miniature case beforehand, and snap the case together during drilling. This provides rigid support and minimizes the chances of bending the case out of shape. Clean off burrs and remove chips from the case when drilling has been completed.
Cut shafts of the volume controls (R6-S, R1, and R3) to a length of $3 / 8 \mathrm{in}$. Place the end of the shaft that will be discarded in a vise and cut with a hacksaw. Catch the control as it falls free. This procedure minimizes the chance of damaging the controls.

Mount the volume controls and jacks (J1, J2, and J3) as in Figs. 2 and 5. Connect the grounding wire, the jack connections, resistors R2, R4, and R5, and the 3 amplifier board holding wires as shown in Fig. 5. Use insulating spaghetti on R2 and R4.
The schematic, Fig. 6, will prove helpful in this and succeeding steps. Use rosin core solder for making connections. The 3 ampli-


Amplifier connected to $11 / 2$-in. speaker (left) and mike (right).

fier board holding wires will be soldered to the ground strip on the bottom of the board to hold it in place.
Installing the Subminiature Amplifier. Figures 7A and 7B show top and bottom views of the printed circuit audio amplifier. Unsolder and remove the yellow speaker lead, the green and the blue input leads, and the green volume control lead. Don't overheat the board in doing this and be careful not to unsolder other connections.

Place the front of the case and the amplifier in positions relative to each other as in Fig. 8A. Solder the volume control leads (orange to unused outside terminal on R6, red to middle terminal), the orange and red switch leads to switch S , and the black output lead to the center terminal of the output jack (J3).

Now slip the amplifier into place with the ground strip edge of the board resting on the shoulders of J1, J2, and J3 as shown in Figs. 8 B and 9 . The bottom side of the board rests against the center connection terminals of J1, J2, and J3. The output transformer case

Preliminary wiring and mountingy showing amplifier board holding wires and common grounding wire.
may rest on the insulated part of switch S . Connect the battery (be sure switch $S$ is off) and slip the battery into place (Fig. 9).

Push the amplifier board against the battery and solder the holding wires which were soldered on the ground terminals of $\mathrm{J} 1, \mathrm{~J} 2$, and J3 to the copper ground strip that runs along the bottom edge of the amplifier board. Solder the junction of R2, R4, and R5 to the "High" input connection (on the left end of the board just above red battery lead connection). The blue lead was removed from this point during a previous step.

This completes the midget PA system wiring. Place a drop of Duco cement between the output transformer frame and S. Note that everything fits neatly in the case and the battery is held snugly in place.

Mark the outside of the battery end of the case with a grease pencil, or a piece of tape. Slip the back of the case into place. You might have to bend the side flanges of the end of the front of the case out very slightly to do this. Be careful not to let the edges of the back of the case rupture the insulation on the battery connector.

Also, dress leads in the case so that the edges of the back won't cut or short them when the back is pushed into place. Fasten the case together with two screws (provided with the case) at the unmarked end of the case. Don't fasten with screws at the battery end (the end you marked with grease pencil or tape) or you may damage the battery or battery connector: If the back of the case seems to fit loosely at the battery end, remove the back and spring the sides slightly.

To finish off the PA system, type or hand letter the front panel markings shown in Fig. 2 on a piece of paper and cut to $3 / 8 \times 4 \mathrm{in}$. Fasten it to the case with a piece of cellophane tape running the full length of the




Connecting the printed circuit board to the switch and jacks.


Ground strip edge of board rests on jacks J1, J2, J3.


Amplifier completely assembled with battery tucked in place.
solder the wire leads to the speaker. I used shielded wire, but you can use ordinary insulated wire. The other ends of the speaker leads connect to a phono plug (Lafayette MS-471). Solder one lead to the center pin and the other to the outer shell of the phone plug. If you use shielded wire, the center conductor solders to the plug center pin and the shield fastens to the shell of the plug.

The 6 in. speaker in Fig. 1 is a Lafayette SK-27 mounted in a baffle. This baffle has been replaced by a more modern-looking one (SB-10) in the Lafayette catalog. Be sure to provide strain relief for the speaker wires with an insulated staple on the inside right wall of the baffle.

## ver Story <br> VHF Converter for Shortwave Or Communications Receivers



Bring in the full 2-meter amateur band, or police, fire, airline, taxicab, and other commercial calls on your present quality rig for \$35

Hom operator swirching on compael VHF converter connected to his powerful shortwave bandspread receiver. With this economical addition, the big rig will pull in 2-meter amateur signals or other VHF bands with the same high quality of sensitivity and stability it offers to high frequency bands.

By EDWIN E. STEINBERG, W9QJO

MANY shortwave broadcast receivers have 7 or 14 mc bands but do not cover very high frequencies (VHF). Most commercial and surplus military communications receivers cover high frequency bạnds but not VHF.

Whether you're a ham itching to get in on the exciting and rapidly growing 2 -meter amateur band or simply an interested listener who wants a ringside seat for amateur, government or commercial communications on VHF, here's a converter that's just what you need. You can build it for less than $\$ 35$ worth of new parts purchased from any of several national mail order houses.

You can make a cheaper VHF rig if you're willing to sacrifice sensitivity, stability and reliability, but this is a small amount compared to what you would have to lay out for a complete commercial VHF receiver having equivalent performance.

A commercial artist friend who had never before built any electronic equipment can well attest to the ease of building this converter and success of its operation. As for durability, though, I have had one model in operation for nearly four years; another for
three years. The unit in Fig. 1 has been worked steadily more than five months.

The block diagram in Fig. 2 reveals the simplicity of converter operation. VHF signals are first amplified sufficiently to overcome the circuit noise, which is a characteristic of the converter and receiver circuits that follow. The signals are then combined with an "oscillator injection" signal in a heterodyne mixer to produce the intermediate frequency (IF) output. This output can then be received by a shortwave-broadcast or HF communications receiver.

A frequency (band) spread of four to six megacycles is practical for a VHF converter which allows an operator to tune exclusively by means of the HF-receiver controls. For example, the 144-148 mc (2-meter) amateur band can be covered by a single VHF receiver converter. IF output is from $14-18 \mathrm{mc}$, or $7-$ 11 mc , depending upon the original converter design chosen. Table 2 lists a choice of four bands you can cover.

The HF (shortwave-broadcast or communications type) receiver functions as a "tunable IF" (for the VHF converter) to select the desired VHF station signal. If no such receiver is available, a surplus "command" receiver can be purchased at a reasonable


CONVERTER FUNCTIONAL BLOCK DIAGRAM
cost. Use of a command receiver with the VHF converter has the advantage of providing a completely independent VHF receiving installation, so that other receiver equipment remains free for normal use.
Physical Layout and Wiring of VHF equipment is critical and must duplicate that shown in the illustrations. Don't let this scare you off, however, as satisfactory performance can be obtained even if the wiring isn't "pretty." No special precautions are necessary for power supply wiring. Perform the drilling, assembly, and wiring as follows:
To pre-assemble IF transformer T1 as shown in Fig. 3, remove the coil assembly from its shield can, taking note of its position in the can for replacement. Remove the red lead from the coil. Connect capacitor C14 (see Table 2 to determine value) between the

TABLE 1-VHF BAND ALLOCATIC
FREQUENCY BAND
SERVICES
108-144 me Aviation. Satellite Communisat tary Affiliated Radio Services
$144-148 \mathrm{mc}$ Amateur (Military Affliated Ro ises are just below 144 mc Air Patrol is just above 148 m
148-150 mc Government, CAP
150-174 me Land Transportation, Taxi, Railroad, for Carriers, Telephone Compa Maritime Mobile (Marine), Industri Police, Fire, Hospitals, Public Safety
174-216 ms Television Channels 7-13
216-220 mc Telemetering
220-225 me Amateur
blue lead coil terminal and the coil terminal from which the red lead was just removed. Do not solder this last connection because two more connections have to be made to this lug. Slip $3 / 4 \mathrm{in}$. of spaghetti tubing over one lead of resistor R9 and connect this lead to the coil terminal in place of the red lead.
Connect C15 between the same lug used for C14 and R9 and the lug with the black lead. Remove the black lead. The lead of C15 can be left long to be used later as a ground connection. Solder all connections just made.



Slip $3 / 8$ in. of spaghetti tubing over one lead of C16 and connect this lead to the coil terminal with the green lead. Remove the green lead and solder the capacitor connection. Replace the coil assembly in its shield in the original position, and now put aside the transformer, ready for later installation.

Center-punch all holes as in Fig. 4. With a $1 / 8 \mathrm{in}$. bit, drill holes at all punch marks. Enlarge the chassis holes as in Fig. 4. Note that many of the holes remain $1 / 8 \mathrm{in}$. as originally drilled. You can make the cut-out for transformer T1 in many ways. One method is by drilling four ${ }^{1 T} / 64 \mathrm{in}$. holes as in Fig. 4 and using a file to remove the remainder of the unwanted aluminum. Then remove all burrs from the chassis.

Mount all tube sockets with \#4-40 x $1 / 4 \mathrm{in}$. roundhead ( $r h$ ) machine screws, lockwashers, and hex nuts. Be sure to fit each socket so that the \#1 pin is positioned as in Fig. 4. Note that one hex nut and lockwasher are not used for mounting the socket for V2, since this screw threads into one mounting stud of C9. Insert a \#4 lockwasher under the other stud of C9 to serve as a spacer and insert a \#4-40 x $1 / 4 \mathrm{in}$. rh machine screw into the capacitor stud to complete its mounting.

Now mount the crystal socket and trimmer capacitors C1, C6, and C10, using \#4-40 x $3 / 8 \mathrm{in}$. binder-head machine screws, fiber washers, lock washers, and hex nuts. The fiber washers are used under the screw heads to prevent trimmer breakage and a fiber


Close-up views showing location of major parts on top and bottom of chassis.

washer is used under the hex nut to prevent crystal-socket breakage. Use care not to tighten these screws excessively. Breakage can still take place, despite the fiber washers.

Use an insulated tie-post in place of the one mounting nut (closest to V1 socket) on trimmer capacitor C6. Mount the other two insulated tie-posts, using \#4-40 $\times 1 / 4$ in. rh ma-
chine screws with \#4 lockwashers under their heads. Attach the 5-lug tie-terminal strip with a \#6-32 x $1 / 4 \mathrm{in}$. binding-head machine screw, lockwasher, and hex nut.

Attach coax connectors J1 and J2, mount feed-through capacitor C12, pilot-light assembly I1, and power switch S1. These components are supplied with their own mounting hardware.

You are now ready to wire in all small components, including resistors, capacitors, coil L3, and coil L7. Check Table 2 to determine the value of L7. Pre-form coils L1, L2, L4, L5, and L6 as specified in Table 2. Install coils L1, L4, L5, and L6 parallel to and $1 / 4$ in. away from the chassis. Note that L4, L5, and L6 are mounted on a common central axis (Figs. 5 A and B). Mount coil L2 on the socket terminals of V1 and position it perpendicular to the chassis. The ground leads of L1, L5, and the plate lead (to pin \#6 of V1) of L4 should be straight. Make temporary solder connections to each of these leads to permit future coil adjustment during alignment.

Mount and wire-in power transformer T2, the pre-assembled IF transformer T1, and the

TABLE 2-COIL, CAPACITOR, AND CRYSTAL DATA FOR VHF BAND COVERAGE SEGMENTS

| Port | 108-112 me Band | 120-125 me Band | 144-148 me Band | 151-157 me Band | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 5 furns, $1 / 2^{\prime \prime} L_{\text {, }}$ tap at $31 / 2$ turns | 4 furns, $3 / 8^{\prime \prime} \mathbf{l}$, lap of 3 turns | 3 furns, $1 / 2^{\prime \prime}$ l, tap at $13 / 4$ turns | 3 furns, $1 / 2^{\prime \prime}$ L, top at $13 / 4$ turns | "Knife" lor maximum curve amplitude \& minimum tilt |
| 12 | $\begin{aligned} & 17 \text { furns, Cl W, } \\ & 1 / 2^{\prime \prime} \text { I.D. } \end{aligned}$ | $\begin{aligned} & 15 \text { turns, CL W, } \\ & 1 / 2^{\prime \prime} \text { I.D. } \end{aligned}$ | $\begin{aligned} & 11 \text { turns, Cl W, } \\ & 1 / 4{ }^{\prime \prime} \text { I.D. } \end{aligned}$ | $\begin{aligned} & 9 \text { turns, CL W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \end{aligned}$ | "Knife" for maximum curve amplitude |
| 14 | $\begin{aligned} & 7 \text { furns, CL W, } \\ & \text { 1/4" 1.D. } \\ & 3 / 16^{\prime \prime} \text { from L5 } \end{aligned}$ | $\begin{aligned} & 6 \text { furns, CL W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 1 / \mathrm{r}^{\prime \prime} \text { from } 15 \end{aligned}$ | $\begin{aligned} & 4 \text { furns, CL W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 3 / 16^{\prime \prime} \text { from 15 } \end{aligned}$ | $\begin{aligned} & 4 \text { furns, CL W, } \\ & 1 / /^{\prime \prime} \text { I.D. } \\ & 1 / 8^{\prime \prime} \text { from } 15 \end{aligned}$ | Space from $\mathbf{L 5}$ for required curve width |
| 15 | $\begin{aligned} & 5 \text { turns, Cl W, } \\ & 1 / 4^{\prime \prime} 1.0 . \end{aligned}$ | $\begin{aligned} & 5 \text { turns, CL W, } \\ & 1 / 4^{\prime \prime} 1.0 . \end{aligned}$ | $\begin{aligned} & 4 \text { turns, CL W; } \\ & 1 / 4^{\prime \prime} \text { I.D. } \end{aligned}$ | $\begin{aligned} & 4 \text { furns, Cl W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \end{aligned}$ | Use C10 adjustment |
| 16 | $\begin{aligned} & 5 \text { turns, Cl W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 1 / \mathrm{s}^{\prime \prime} \text { from } 15 \end{aligned}$ | $\begin{aligned} & 5 \text { turns, Cl W, } \\ & 1 / 4^{*} \text { I.D. } \\ & 1 / 8^{\prime \prime} \text { from } 15 \end{aligned}$ | $\begin{aligned} & 4 \text { turns, CL W, } \\ & 1 / 4^{\prime \prime} 1.0 . \\ & 1 / /^{\prime \prime} \text { from } 15 \end{aligned}$ | $\begin{aligned} & 4 \text { turns, CI W, } \\ & 1 / 4^{\prime \prime} \text { I.D. } \\ & 1 / \mathrm{a}^{\prime \prime} \text { from } 15 \end{aligned}$ | Use C9 adjustment for max. VTVM reading at C12 |
| 17 | Stancor <br> \#RTC-8517 | Stancor <br> \#RTC-8517 | Stancor <br> \#RTC-8515, <br> 3 turns | Stancor \#RTC-8515, 4 turns | Volues for 14 me <br> If output |
|  | Stantor <br> \#RTC-8517 | Stancor \#RTC-8517 | Stancor \#RTC-8515, 4 Iurns |  | Volues for 7 mc If output |
| Y1 | $31.333 \mathrm{me},$ 3rd overtone | $35.333 \mathrm{mc} \text {, }$ <br> 3rd overtone | 65.000 ms , 5th overtone | 68.500 mc , 5th overtone | For 14 mc output, anti-resonant crystals |
|  | 33.667 mc , 3rd overtone | $37.667 \mathrm{mc}_{4}$ 3rd overtone | 68.500 mc , 5th overtone |  | For 7 me output, onti-resonant erystals |
| $\begin{gathered} \mathrm{C14} \\ \& \\ \mathrm{Cl} 6 \end{gathered}$ | 18 mmid ceramit-disk capacitor, Centralab \#ID-180 (talayette \#CA-498) |  |  |  | For 14 me output |
|  | 91 mmid ceramis-disk capacitor, Centralab \#ID-910 (lalayette \#CA-33) |  |  |  | For 7 me output |

KEY: CI W, close wound I.D., inside diameter

L, length of coil winding
filter choke L10. Use \#6-32 $\times 1 / 4 \mathrm{in}$. binderhead machine screws, lockwashers, and hex nuts to attach the power transformer and choke. Mount and wire-in the fuse extractor post (for fuse F1), then attach the line cord and plug. Complete the wiring of the power transformer and switch S1, then hookup the filter capacitors C 17 and C18. Install all tubes, tube shields, and crystal Y1, after studying Table 2 for the proper crystal frequency.

Check all parts and wiring, and look for solder splash or other causes of shortingparticularly in C9. An ohmmeter is the best test for power-supply shorts.

To Adjust the Oscillator, connect the negative voltmeter lead of a vacuum-tube voltmeter to the test point (C12 in Fig. 6). Clip the ground lead of the VTVM to the converter chassis and set its range switch for a full-scale reading of from 3 to 10 volts dc. Now turn on the converter power switch S1. Adjust C9 for a maximum VTVM reading. Proper supply voltages and a good 6U8 tube will result in a peak reading of at least 1.5 volts.


Aligning the converter for the desired VHF band with the aid of a sweep generator and oscilloscope.

How to Align Your VHF Converter. Connect the output of a sweep generator to jack J1 through a short 52 -ohm coaxial cable, and the receiver input (antenna terminals) to jack J2 through a short length of 72 -ohm co-

axial cable. Connect the oscilloscope horizontal input terminal to the sweep generator according to directions given in the sweep generator instruction manual. Connect the 'scope's vertical input terminal to the converter test point (C12) using a shielded cable or oscilloscope probe, as recommended by your oscilloscope instruction manual.

Make certain that chassis ground hookups use short leads or copper braid. After turning on all equipment, allow at least 15 minutes for warmup. Consult your instruction manuals for recommended warmup time.

Set the receiver tuning and band switch at the center frequency of the desired IF band, and receiver controls for AM reception (with AGC). Set the sweep generator output frequency to the center frequency of the desired VHF band, and the oscilloscope controls for the proper horizontal (base-line) sweep. Adjust trace brightness and focus as in the manuals. Now you can increase the oscilloscope vertical gain to maximum, or until ac hum begins to deflect horizontal trace. Reduce oscilloscope vertical gain only as required to remove any perceptible hum-deflection of horizontal trace. Then increase the sweep generator output to obtain an oscilloscope vertical deflection of from 1 to 2 in.

Adjust trimmer C1 for maximum vertical deflection of the oscilloscope trace between the band-edge markers for the desired VHF band. It may be necessary to stretch or pinch the L1 coil to adjust C1 properly. If a "birdie (other than a sweep generator marker)" appears on the oscilloscope trace, "knife" (stretch) L2 just enough to eliminate the birdie. Then readjust C 1 for maximum vertical deflection. Warning: The voltage on L2 can cause a severe shock. Use caution in knifing this coil.

Alternately adjust C6 and C10 to obtain a band-pass curve as in Figs. 7 and 8. While the band-edge markers should be at maximum response, the converter operation will still be satisfactory if the markers are not more than $30 \%$ down the outside slopes of the curve. This compromise marker position is often desirable when 5 - or $6-m \mathrm{c}$ band spread is required. You can obtain 3- or 4-mc band coverage easily with the markers at peak response.

If the response curve is too narrow (markers down the outside slopes of the curve), move L4 closer to L5 to increase coupling. If the response curve is too wide (markers within the maximum-response peaks), move L4 away from L5 to decrease coupling. After either change, you will need to readjust C6 and C 10 .

If the maximum-response peak adjacent to one band-edge marker is larger than that adjacent to the other marker (tilted response curve), you can readjust C 1 to make response peaks equal in amplitude. But performance

of your converter will generally be satisfactory when one response peak is up to $30 \%$ smaller than the other.

Squeeze or stretch coil L2 to obtain the maximum response-curve amplitude, but again use caution to avoid electrical shock. Readjust C1, C6, and C10 as required for the proper curve shape and maximum amplitude.

Now turn the sweep (and marker) generator output down to zero. Replace the oscilloscope with the VTVM at the converter test point (C12) and repeat the oscillator adjustment described earlier.

Disconnect the VTVM and put back the 'scope. Turn the sweep (and marker) generator output back up to obtain a response curve, then recheck the adjustment of C1 (curve tilt). C6 (curve amplitude), and C10 (curve amplitude).
With tests completed, disconnect the sweep generator and oscilloscope, then adjust the slug in the IF transformer (T1), for maximum noise from the receiver speaker (or maximum " S -meter" reading on noise).

To Operate Your Converter, you'll need a VHF antenna designed for the particular frequency band chosen. It should have a $52-$ ohm coaxial transmission line (lead-in) to carry the signal input to jack J1 on the converter.

Since the power switch S1 is the converter's only operative control, tune in the desired VHF signals with your receiver's controls, all of which will function in their normal manner.

You should receive normal VHF signals in the IF band for which the converter was built. However, communications-receiver "S-meter" readings will be higher than the normal settings due to signal amplification in the converter.

Signals received will be stable in frequency since both your converter and the VHF transmitters are crystal-controlled. The level of stability is primarily dependent upon the quality of your receiver.


The complete circuit fits in a 4 -in.-long plastic box. A single hearing aid battery provides $221 / 2$-volt power.

ASENSITIVE relay that trips whenever the station to which a radio is tuned goes off the air enables this novel circuit to act as an automatic Conelrad monitor or as a radio controlled switch.
In a defense emergency, if a national alert should be declared, all broadcast radio stations in the U. S. would automatically go off the air. Should such an emergency occur at



#### Abstract

This novel circuit converts any radio into a Civil Defense alarm. It can also be used as a remote radio control switch


By T. A. BLANCHARD

night, you might not know it until it was too late to reach a shelter. With this device attached to any radio tuned to a 24 -hour broadcast station, the alarm would sound the second a Conelrad emergency took place.

Or by simply using the carrier of a wireless phono player that has a normally closed push button switch wired in series with the oscillator's ground return, you can control electrical equipment remotely from any point.

Install the completed unit in a small metal or plastic box. For silent operation, you can add a single-pole, single-throw switch in series with the radio speaker voice coil so that when the set has been tuned, snapping the switch will silence the radio but won't affect the alarm's operation.

When you tune the radio to a station, you'll find that voltage applied to the transistor base results in only a tiny flow of current from emitter to collector. By adjusting the spring which controls the armature tension, set the relay so the contacts drop out at about 50 microamperes and pick up at 2 milliamperes. Now if you tune to a station and then tune away from the station's carrier, the relay contacts should close immediately.

A less expensive relay with similar dropout and pickup characteristics can be selected from a parts catalog. Use your radio volume control as
a sensitivity adjustment, advancing it to a level that provides the most satisfactory pickup and dropout of relay contacts. When properly adjusted, the circuit should not be affected by music or speech, but only by the absence of the station's inaudible carrier, which will cause the alarm to draw current and close the relay alarm contacts.
By reducing the relay armature tension, you will be able to use the device for other applications. For example, the relay can be adjusted to follow the voice of a speaker or the beat of a musical selection.
Assemble the circuit parts on a $33 / 8 \times 21 / 2-\mathrm{in}$.


CONNECTING ALARM TO ANY RADIO


For easy assembly, use a perforated circuit board.
Moke the clips of scrap sheet metal.
perforated Bakelite board. A thin piece of plywood or plain plastic would also serve. Mount the transistor on three flea clips designed for use with the perforated board, or simply use a regular transistor socket. Use two $6-32 \times 1 / 8-\mathrm{in}$. binding head screws to fasten the relay base in place.

Mount the miniature audio transformer and battery clips with $2-54 \times 1 / 4-\mathrm{in}$. screws. Use either a stock battery clip, or bend the clips from $1 / 2 \times 1-\mathrm{in}$. strips of tinplate or brass. The center battery retainer clip is a $1 / 2 \times 21 / 4$ in. strip of sheet metal bent $U$-shape and mounted between the contact clips.

Wire the alarm (Figs. 2, 4, 5) next. The battery can be lifted away from the clips when the unit is not in use, or you can add a switch between the B plus battery clip and the transistor emitter. In the circuit shown, the normally closed contact remains unwired.
The alarm uses a simple transistor type dc amplifier, and uses a $221 / 2$-volt hearing aid battery such as Eveready \#412 or \#412E to provide the operating voltage. Connect the input of the alarm to the voice coil lugs of your radio's PM speaker through the 500 -ohm primary, 3.2 -ohm secondary audio output transformer. Plans show the relay connected to a typical doorbell, however the Sigma relay contacts will handle a full $2-\mathrm{amp}, 120$-volt non-inductive load to control small motors, lamps and solenoids. Wire each relay contact to a colored light bulb, and the lamps will blink in time with the music.

Another novel application would be to connect the jaw of a toy puppet to a solenoid magnet. Using the original single contact hookup, connect the solenoid in series with a power source and the relay contacts. The puppet will open and close its mouth in perfect synch with the radio voice.

Experimenters are often called upon to fix one of those stubborn receivers that plays for an hour and goes dead. The ideal time to check such a set is at the moment the signal fails, but this would require standing by. Simply connect the alarm and open the voice coil. If and when the radio quits, the bell will signal the fact. The unit also makes an excellent demonstrator to show how radio controls operate.

| MATERIALS LIST-AIR RAID RADIO ALARM |  |
| :---: | :---: |
| No. Req'd | Size and Description |
| 1 | SPDT relay, 2000 ohm coil (Siyna Type 4F) |
| 1 | miniature audso output transformer, 3.2 ohm primary/ 500 ohm sec. (Argonne \#AR-119)* |
| 1 | P-N.P transistor (inexpensive type such as CK-722 or 2N-107) |
| 1 | C-D "Cub" plastic paper capacitor, $0.15 \mathrm{mfd}, 400$ dcwv. |
|  | \#412 or 412E miniature $221 / 2 \cdot v$. battery |
| 2 | perforated plastic pancl $33 / 8 \times 21 / 2 \mathrm{in}$. |
|  | $41 / 2 \times 31 / 4 \times 11 / 4{ }^{\prime \prime}$ plastic box to house control |
| * Available L. I., N. | Lafayette Electronits, 111 Jericho Turnpike, Syosset, |

## The Quickie

## A $\$ 10$ three-transistor-pocket portable for nearby reception

By FORREST H. FRANTZ Sr.

LESS than two hours' work and about \$10 worth of parts will provide you a Quickie (Fig. 1), a small portable radio which will pull in most broadcast stations within a $10-$ mile radius. By using a longer, external antenna, you can receive more distant stations.

The secret of its quick construction and inexpensiveness can be found in the readymade, three-transistor amplifier it uses, (Lafayette PK-522 complete with transistors). This subminiature, printed circuit amplifier costs only $\$ 3.75$, little more than the cost of the transistors alone. Quickie weighs only a few ounces, and is small enough to fit in a coat pocket.


Quickie is mode in less thon two hours.


Tuning in a local radio station.

Construction. First place the speaker inside the plastic case positioned against the sides as in Fig. 3. Use the speaker as a template to make the four mounting holes with a heated ice pick. Remove the speaker from the case and make a series of random holes for speaker sound. Start two more holes $11 / 10 \mathrm{in}$. from the respective case edges with the heated ice pick to establish centers for the tuning capacitor (C1) and volume control (R1) mounting holes. Enlarge the latter holes to $1 / 4 \mathrm{in}$. diameter with a taper reamer.

Cut off the excess plastic built up around


Speaker in position for mounting.


Modifying the amplifier with a resistor added on under side of printed circuit board (left) and a capacitor moved to top side (right).
small holes with a knife and wash the case in soapy water. Rinse in clear water and dry thoroughly.
Next, cut the shaft of the volume control (R1-S) with a hacksaw to a length of $3 / 8 \mathrm{in}$. An easy way to do this is to place the portion of the shaft to be discarded in a vise. Catch the control as it falls free to prevent damage. Mount the speaker C1, R1-S, : and L1. Note that L1 must be removed from the Masonite mounting board. Fasten it to the plastic case with Duco cement.

Connect the parts, including the short antenna lead and the diode (D1) as shown in Fig. 3. Use rosin core solder and a hot, clean soldering iron. Be careful not to overheat the parts and be especially careful not to melt the plastic case. Set the case aside for final assembly later.
Amplifier Modification. Figures 4A and 4 B show how the amplifier is modified. The instruction sheet which comes with the amplifier will furnish additional information.
Disconnect and remove the $30-\mathrm{mfd}, 10$ volt capacitor originally mounted on the bottom side of the amplifier board. Be careful to note polarity and connection points. Install this capacitor on the top of the amplifier board and connect to the same points as before, with leads inserted through the top of the board as in Fig. 4B.

Solder the R2 resistor in the circuit on the bottom side of the board (Fig. 4A). One end of R2 connects across the points to which the red and orange volume control leads are attached. Remove the red and orange volume control leads. The other end of R2 connects to the broad ground strip (Fig. 4A). Disconnect and remove the green volume control lead.

Next, solder two $23 / 4$ in. lengths of \#22 bare, solid wire to the amplifier board ground strip, keeping in mind that these two wires should be so positioned that the amplifier can be attached through the speaker magnet frame as in Fig. 5. A trial or two may be required to obtain satisfactory positioning.
Final Assembly. With the case assembly and amplifier in position (Fig. 5), complete
the amplifier wiring. The schematic (Fig. 6) may be helpful.

Connect the green amplifier input lead to the ground terminal on R1, the blue input wire to the center terminal on R1, and the red and orange switch leads to the terminals of switch S1. Connect the black and yellow amplifier output leads to the speaker terminals.



Shift wire position as needed so amplifier will fit in place.


Now position the amplifier for mounting. Pass the two pieces of solid wire through the inside of the speaker magnet frame, bend them around the outside of the frame, cut them to length, and solder them to the ground
strip along the upper edge of the amplifier. This arrangement will secure the amplifier in place. Check that none of the amplifier components or leads short against the tuning capacitor, volume control, diode, coil leads, or speaker terminals.
Fasten the battery connector to the battery and insert in place. Attach volume controlswitch knob and tuning capacitor dial.

It's a good idea to fasten the back of the case to the front with a drop of Duco cement to prevent accidental operling.
To Test Quickie, turn the volume control all the way up. Rotate C1 until a station is heard. The receiver will be most sensitive and directional with the antenna axis oriented horizontally. The antenna pick-up lead on the original model was about 10 inches long, but a longer lead will provide greater sensitivity.

You can't expect Quickie to perform like a superhet. But, considering the number of transistors and the cost, you'll be getting your money's worth.


# Desk lamp mike stand 

Record that tall story using the desk lamp reflecfor to increase the range of your hand mike

AMICROPHONE stand for hand mikes (such as those that come with less expensive tape recorders) can be improvised from a flexible neck desk lamp with its cord removed (or at least disconnected), a plug to

## Keeping Tube Numbers Readable

- After tubes used in experimental circuits have been handled for some time, the type numbers on the glass envelope wear away
 and are almost impossible to read. To prevent this and keep numbers readable indefinitely, apply clear fingernail polish to the numerals when tubes are new. If the numbers on older tubes are illegible, apply ammonia with a piece of cotton and let it dry to bring numbers out clearly.-John A. Comstock.
fit the lamp's socket, and a $1 / 8 \times 3 / 8$ in. metal strip. Bend the metal strip to the size necessary for the mike in question, and use as shown. To pick up faint sounds attach the lamp's bowl-type reflector to the lamp's socket to "funnel" or focus the sound into the mike. Face the mike toward the inside of the reflector.-Andy Vena.


## Grommet Is Pilot-Light Bumper



- In some electronics gear, pilot bulbs are placed in locations that make them especially vulnerable to breakage. To prevent such breakage, slip a snug-fitting rubber grommet over the bulb's glass envelope as shown. The grommet will serve as a bumper to ward off damaging blows--J.A.C.


Keep hands away from the picture tube and the high valtage cage, even though you have pulled the cheater cord. An 18,000 volt shock can kill! And be sure you aren't standing on a damp basement floor.

# Don't Kick Your TV Set FIX IT 

By JACK Grimes

|F you know what not to do as well as what you can do, you can save up to $80 \%$ of the cost of maintaining the family's one-eyed monster.
The wise family repairman does not call a serviceman every time his picture tube has the wiggles, or does he immediately jerk out all the tubes and head for the self-service tester at the drug store. Nor does he attempt to become an electronic expert and attack the set with wire cutter and soldering irons.

All too often, a serviceman "loads" the receiver with new tubes, or the owner is informed it will have to go to the shop. Then, from $\$ 20$ to $\$ 100$ may be required for a ransom.
(Editor's Note: In many parts of the country, the TV repair industry has organized to discredit shops that habitually gouge the customer. This once all too prevalent practice is no longer the general rule.)

Sometimes the owner having suffered the gouge, fills a paper sack with every tube in
the set, only to find the drug store tester shows half or two thirds of his tubes weak or shorted. The bill for replacements may be even larger than a shop repair, and the set may still refuse to operate.

Another owner may search the library and newsstands or send off for every repair-it-yourself book he can find. He may invest in a few hand tools only to wind up with the biggest repair bill yet, the cost of a new set.

These examples may sound fictional, but 10 years of active participation in the TV service industry tells me that $90 \%$ of all set owners fall into one or more of the three patterns. The other $10 \%$ are home repairmen who have the prime quality of common sense. They know the meaning of such basic terms as video, audio, horizontal, vertical, and tuner, and they know that there is only one worthwhile test for any TV tube: Will it work in a particular set?
The Wise Set Owner has usually acquired this knowledge at considerable expense. Seldom has he read it in a "be an electronics expert" book. He knows that he cannot tackle major trouble shooting problems without a shop full of instruments, but he has the sagacity to do all that any TV repairman will usually do in the home. He knows: (1) that $85 \%$ of all set troubles are caused by defective tubes; (2) how a defective tube can be located using the set itself as a tube tester; (3) that he should avoid drug-store tube testers, since many of them are built to show a maximum number of shorted or gassy tubes (up to $70 \%$ of the tubes showing bad in these checkers may be usable in your set); (4) that he can obtain tubes at a wholesale price, and (5) that he can usually save the average $\$ 5$ service call charge.

Because there are so many varying conditions within a set-and so many different tube applications, the only valid check is under actual operating conditions. For example, a weak audio tube may provide all the volume you can use, and could last years in your set, yet might be useless in a transmitter. In one case only a fraction of the tube's capacity is needed; in the other full output is required. Replacement in a transmitter would be necessary-in your set foolish. A tube checker would say the tube was bad.
If you do use a public tube checker, all you can save is a service call. You will still pay list price for a tube, and the present average


Every sel has a tube layout, either a decal or sticker fastened somewhere on the inside wall or chassis. Do not remove chassis or tamper with picture lube adjustments. You may need a Photofact folder (see text).
is around $\$ 4.00$. You can buy the same item, wholesale for as little as $\$ 1.00$, from mail order electronic supply houses who advertise in this handbook.

If your set flips, flops, refuses to light or to speak, you may feel you're all set to go to work. Slow down. Before you do anything, make sure that you completely understand all instructions. Remember that you are dealing with lethal voltages. Never put your bare hand into the back of the set without pulling the line plug, from the wall outlet, and even this may not always be safe. High voltage capacitors can hold a charge for several hours, if a bleeder resistor is defective.

The only tools you need are a screwdriver, wrench, and a long insulated wand or stick. Remove the back and find the tube location chart. Compare it with a block diagram (Fig. 5). If you own one of the larger sets, or run into any unusual problem, it would be a worthwhile investment to order a copy of Howard Sams Photofact Folder. These folders are available for every make and model of TV set. (Available Allied Radio, by make and model, 38 KK 500 , $\$ 1.95$ postpaid).

As the signal travels through your set, in places both picture and sound are present, in others only one. From the antenna, both sound and picture travel through the tuner, through I.F.'s (amplifiers) and detector. Sound splits off, and picture feeds only through the video amplifiers to the picture tube. Sound goes through the audio tubes to the speaker.

Additional circuits are required to "draw the picture." These are horizontal and vertical "sweep" circuits (Fig. 5). Horizontal tubes are also responsible for creation of the very high voltages applied to the picture tube. A completely dark screen is usually caused by one of these tubes often located inside a shield (Fig: 1).

Another set of circuits keeps the picture


On this set, the cheater cord was originally riveted to the fiber back board. Rivets were removed so the cord could be used as a cheater.
in "step" with the transmitter. Tubes here are designated "sync." Another tube, "AGC" (automatic gain control), keeps the picture level constant under varying signal strengths.

By studying block diagram and tube chart,


The service tech uses on insulated plastic wond to tap tubes. He watches the screen in a mirror, or reflected from a window. Erratic picture er sound pinpoints the foulty tube.



With cheater cord pulled out, the repairman carefully replaces an old tube with a new one. He works with one hand only to avoid shock.
try to determine which tubes may be at fault. If a set has a perfect picture, but no sound, the first thing to look for would be a bad audio tube. If a picture is pulled up at the bottom, it could be a bad tube in the vertical sweep amplifier circuit. Or if it is squeezed in at the sides, check tubes in the horizontal circuit.
If both picture and sound are affected, the cause must be in a circuit common to bothtuner or I-F. Sound may appear normal while the picture is snowy because the eye sees more trouble than the ear can hear. Snow suggests a tuner tube. A picture that won't stand still is caused by sync circuit trouble. One that blanks out-the AGC circuit.

Now set up a mirror in front of the set, or use the reflection in a window (Fig. 4). Plug in the cheater cord, and proceed with caution. If none of the tube filaments light, look for a blown fuse. Also, the set may be wired in series like Christmas tree lights. When one filament blows, they all go out. You can use the drug store checker to check filaments, or
buy one of the filament testers available for about $\$ 3.00$.
If you notice a pungent acrid odor, you may have a bad selenium rectifier. Turn the set off immediately. It will require shop work. The same applies if you notice any strong smell or smoke.
If all tubes light, inspect each one. After the set has been on for a few minutes, pull the plug and feel each tube (use one finger only) except those in the high voltage section. All tubes except the high voltage rectifiers must light or feel warm to the touch. Never get closer than a few inches to the high voltage rectifier tubes while power is on. Even with power plug out, the high voltage circuits can carry a stored charge. To be safe, wait a few moments, and then use a well insulated lead wire to short the high voltage tube cap to ground.
If no burnt out tube filaments are found, turn power on again and tap each tube gently with an insulated wand while you watch the picture in a mirror (Fig. 4). A shorted tube will cause lines in the picture, cause it to shift or tear, or cause noise in the sound system. Watch for signs of arcing within the tubes.
This is the method servicemen use to find a bad tube; logic, inspection, jarring under operation, and finally substitution. Sometimes you'll find that one set has several tubes of the same type number used in different locations. Swapping such tubes within the set will tell you that one tube is bad if the trouble transfers.
You'll Save Money by keeping a complete set of spare tubes (except picture tube) on hand. The set may cost you less than $\$ 5$ if you buy at an electronic jobber, or through one of the mail order wholesalers. Such dealers will send catalogs on request and will sell not only to service shops, but to amateurs and experimenters too.
Never try to replace circuit parts other than tubes and fuses unless you are advanced in electronics. Do not disturb any of the chassis adjusting knobs and screws unless they are clearly marked as to function. For example, the vertical linearity control affects the top of the picture. Height, bottom, and width controls do what they say. Upset other adjustments and your set will have to go to a shop for alignment. In the event that you do call in a repairman, insist that all replaced parts be returned to you with an itemized bill.


Unusually light and comfartable, these earphones give you sound quality comparable to commercial stereo headsets.

# BUILD YOUR OWN HI-FI STEREO HEADPHONES 

By ALTON B. OTIS Jr.

USING two replacement transistor radio speakers that cost less than $\$ 2$ each, you can build a stereo headset comparable in sound quality, comfort, and looks to models costing five times as much.

Three factors contribute to the quality of these phones. The speakers, only three inches in diameter, make the phones compact and light in weight. Second, the speakers are sealed to the ear with foam rubber rings, thus high apparent sound levels are obtained with very low power input. Distortion is held to a minimum, increasing over-all response at the same time. Third, the speaker is mounted on a cardboard baffle with a center hole. If you vary the diameter of the hole, the low end of the range is hardly affected. But due to a high frequency beaming effect, the builder can tailor response just by altering the size of the hole.

Make the earphone housings of 8 -oz. plastic cups of the type used to package food products and novelty items. Drill two $3 / 32-\mathrm{in}$. holes $1 / 4 \mathrm{in}$. up from the bottom of the cups directly across from each other on a center line. Drill a third hole at the bottom for the wire lead. Use a spray lacquer such as Krylon to paint both sides of the cups in an attractive color.

Use $3 / 32$-in. pasteboard, or three layers of
$1 / 32$-in. thick or three layers of posterboard to cut two speaker mounting panels $31 / 2-\mathrm{in}$. diameter to fit the cups. Make a temporary connection from the speakers to a mono source. Be sure phasing is correct. Use rubber cement to temporarily attach each speaker to the mounting panels. Press tightly against the ear during your test. If you want more high frequency response, enlarge the holes until you obtain a satisfactory balance. A $3 / 4$-in. diameter will usually give you very good results.
With the hole size determined remove the speakers. Trim and cement a piece of baffle cloth to one side of each panel. Mount the speaker on the other side using contact glue. Be sure to avoid spilling glue on the speaker cone or corrugated edge. Cover, but do not completely seal off the opening in the back of the speaker frame with masking tape.
For the earphone rings, cut two pieces of $3 / 4$-in. thick foam rubber $103 / 4-\mathrm{in}$. long. At the same time cut another piece $21 / 2 \times 53 / 4$-in. for the head band. Brush three heavy coats of rubber cement on the strips allowing a few hours for each coat to dry, and then spray with heavy coats of clear plastic. The rubber cement seals the rubber air tight, yet allows it to remain soft and pliable, while


Applying contact sement for final assembly. The earphone housings, made of plastic cups, are filled with a backing of fiberglass to eliminate stray sounds back of the speaker cones.


the spray eliminates surface stickiness of the cement, keeping the foam clean.

Cement the ends of each of the two long rubber strips together in a ring, and contact glue to the cloth side of the speaker mounting panels (Fig. 3).
Make the headset frame of two $25-\mathrm{in}$. lengths of 11 -ga. tempered brass wire. Bend as in Fig. 3. For a brushed brass effect, sand the wire lightly. Cut and shape the top piece from a piece of tin can metal. Bend the tabs over the curved portion of the brass wire and crimp tightly in place. Bend the end tabs inward over the side tabs and solder the joints firmly. Touch up sharp edges with a file and rinse with turpentine to eliminate traces of rosin flux. Use a metal primer and then paint. The brass should be protected with masking tape during spraying.

Wire the Headset to a $10-\mathrm{ft}$. length of 4 conductor cable, or any convenient length you choose. Strip $20-\mathrm{in}$. of the outer insulation from one end and $2-\mathrm{in}$. from the other. Cut a $3 / 4-\mathrm{in}$. length of $1 / 4-\mathrm{in}$. brass tubing and sand the surface for effect. Clean up burrs and slip over the cable. Separate the four $20-\mathrm{in}$. conductors into pairs and twist together. Wrap a short length of masking tape around the outer insulation where these leads come out of the cable and press fit the tubing over for a neat connection. At the other end connect a three-wire phone plug to match your equipment, soldering one wire from each of the phones to the ground plug. If your headset will be connected to two amplifiers, use a pair of two conductor plugs instead.

Final Assembly consists of attaching the plastic cups to the frame by bending the ends of the brass wire into the side holes and turning up on the inside. Be sure your third wire lead holes face down. In each cup, insert a

## MATERIALS LIST-STEREO HEADPHONES

Ant. Req' ${ }^{\prime}$
Size and Description
$23^{\prime \prime}$ PM transistor radio replacement speakers (Lafayette Radio SK-193)*
10 ft .4 conductor vinyl covered cable (Belden 8444)
13 conductor phone plug (Switchcraft 12-B)
28 oz. plastic cups (Auto Pak \#1608, Plastic Container Corp., West Warren, Mass.)
4 ft . No. 11-gauge spring tempered brass wire.
1 pc . $12 \times 4 \times 3 / 4^{\prime \prime}$ foam rubber matting
1 pc. $3 / 4 \times 1 / 4^{\prime \prime}$ O.D. brass tubing
Misc. $3 / 32^{\prime \prime}$ paste board, tin can metal, $3 / 4^{\prime \prime}$ fiberglass matting, soft coarse weave cloth (for panel opening), contact olue, rubber cement, paint, primer, etc.

* Speakers and other electronic items required will be found in the 1962 catalog of Lafayette Radio Electronics, 111 Jericho Turnpike, Syosset, L. I., N. Y.
piece of $3 / 4$-in. fiberglass matting $11 / 2$-in. wide by $10-\mathrm{in}$. long. Use a small square of fiberglass in the bottom. Run the twisted wire leads through the bottom holes and tie knots in each pair 4 -in. from the ends.

Solder the leads to the speakers making sure they are correctly phased. Color dots on the speakers make this easy. Use contact glue on the bottom edge of the foam rubber rings and on the inside edge of the plastic cups. Push the speaker assemblies into the cups and position carefully. Contact glue the large strip of foam to the bottom of your head bracket and the project is completed.

Installation. If you are using your headset with a high quality stereo amplifier connect directly to the 8 ohm speaker output terminal. For mono listening connect in parallel to the 4 ohm terminal. If your amplifier is the transformerless ac-dc type or has a high a-c ripple content, the residual hum will make listening uncomfortable. In most cases, the hum can be eliminated by a resistance network (Fig, 4) between phones and amplifier which will permit you to operate at a higher output power level. If one-watt resistors are used, you'll find you can fit the entire assembly within the shell of a large size three conductor plug such as Switcheraft 12-B.

Performance Notes. Frequency response measurements in the low and mid range regions indicated that usable response extended to 30 cps , while at 45 cps , it was down only 2 db . Subjective measurements at the high end indicated a top of about $17,000 \mathrm{cps}$ reasonably flat to $12,000 \mathrm{cps}$. There was a 15 db peak at 32 cps due to the high resonant frequency of the small enclosure. Distortion was extremely low at normal levels, and moderate at ear-splitting levels, while transient response was very good.


Connect the booster chassis to your FM funer with a shorl length of twin lead. The other twin lead feeds out to the antenna.

# More Power for Your FM Set 

> Simple one-fube amplifier increases FM signal 15 times for better music and DXing

1F you live just beyond the acceptable quality range of a popular FM station, or if you'd like to chase FM-DX (long distance reception), this $R F$ amplifier is the answer.

Or, maybe you live in an apartment building where you can't install a full grown antenna for your FM tuner. Then this booster will give your tuner a real chance to exercise its built-in noise-limiting abilities to better advantage. Even on local stations, you'll be surprised at the improvement in music quality.

A $71 / 2 \times 4$-in. cake pan makes an inexpensive easy-to-work chassis just the right size. A coat of spray lacquer in color to match your other equipment will give it a professional touch.
Punch the hole for the tube socket first. If you lack regular chassis punches, just prick a small hole in the right place with an ice pick, and then enlarge the hole to $3 / 4-\mathrm{in}$. using the tang of a mill file or a reamer. Next drill the holes for the tuning capacitors (Fig. 3) to $1 / 2-\mathrm{in}$. diameter. But do not mount yet.

Insert the tube socket in its hole from the bottom of the chassis. Fasten firmly in place by soldering the socket "ears" to the chassis. You can do it with a common 100 -watt soldering iron. Mount a six-terminal strip centered on the rear of the chassis (Fig. 2) using 6-32 machine screws and nuts. Punch a hole oppo-
site each terminal for feeding the leads through the chassis.
Next mount the power transformer and capacitors. Fasten the rectifier in place by means of a 6-32 machine screw passed through the center hole. This hole is insulated by the manufacturer for this purpose.

Start the wiring by feeding the black primary transformer leads through the holes to the power line terminals on the strip. Since most sound layouts have one master switch, no separate switch is shown. However, if you need an individual power switch on your booster, connect a SPST toggle switch in series with one of these transformer leads.

Next wire the selenium rectifier as in Fig. 3. The 47 -ohm resistor protects the rectifier from current surge when the electrolytic capacitor charges. Be sure to connect the positive side of the rectifier to the resistor, and the capacitor to the negative side. This connection must be right.

Support the "hot" positive connection of the electrolytic capacitor by an insulated tie point to the side of the chassis (Fig. 3). Solder the negative connection directly to the chassis. The rest of the power supply wiring is simple, but be sure to observe the right polarity on both the rectifier and electrolytic capacitor. The ceramic capacitors may be


## MATERIALS LIST-FM BOOSTER

Amt. Req. Size and Description


Amt. Req. Size and Description

[^3]

3
All wiring is under the chassis. Six holes just above the output tuning circuit on this photo feed input, output and power leads through to a 6 -terminal barrier strip on top.
wired in either polarity.
Check power supply operation by connecting a line cord to the power terminals. Then read voltage across the electrolytic capacitor. From 140 to 160 volts indicates proper operation. If your wiring is correct but you have difficulty, check the rectifier and capacitor first. The transformer seldom will cause trouble.

Wind the input and output turing coils, \#14 tinned copper wire, around any convenient round object ( $1 / 2-\mathrm{in}$. dia.) such as a drill shank, or fountain pen barrel. Then slide the coil off the form and adjust the turns for uniform spacing over a length of about $3 / 4$-in. Connect these coils across each of the tuning capacitors as in Fig. 3.
The rest of the amplifier is easy to wire following the schematic. Keep all high frequency leads as short as possible and separate the grid and plate leads as much as possible. Press these leads close to the chassis to confine their electromagnetic fields. There should be no difficulty in wiring and checking the circuit.
Wind $L_{1}$ and $L_{8}$ of insulated hookup wire, two turns around the same form used earlier. Remove from the winding form and push between the two turns at the grounded end of each of the two tuned coils. Press these turns in as far as possible for the closest possible coupling and cement in place with Duco or equal household cement. Twist the leads of each coil together and connect to the proper terminals.

Keep the input and output leads as far from each other as practical. Ground the inside tuner output terminal to further reduce coupling with the input.

With wiring completed, turn power on and connect your FM antenna lead to the antenna terminals. Use a short piece of 200 ohm twin lead to connect the output terminals to the tuner antenna terminals. If the wiring is correct, the 6AG5 tube should light up.
Tune in a fairly strong FM station on the tuner. Then adjust the booster's capacitors for greatest signal strength. If the booster is operating as it should, this adjustment should increase the volume noticeably. If not, check the wiring carefully for short-circuits.
When a decided boost is obtained on strong local signals tune in a weak one, and readjust the booster tuning capacitors. It is on these weaker signals that this unit really should "pay off." When operating correctly, this booster should pull in several stations which were inaudible without it.

If little or no boost is obtained, but a loud howl, or blocking, is observed at certain dial settings of the booster, the unit is oscillating. This is caused by feedback from the output to the input. To correct, separate the input and output twin-leads more completely or reverse connections at either (but not both) the input or the output terminals. If this does not eliminate the oscillation, invert the chassis and bend the plate and grid wires further apart, or press each closer against the chassis, avoiding short-circuits, however. This will correct the tendency to oscillate.

Suitable for boosting FM signals, this unit should not be expected to perform satisfactorily for TV signals. In order to properly reproduce picture detail it is necessary that all TV circuits be designed to pass a signal bandwidth approximately thirty times greater than required for FM broadcasting.

# Transistorized Signal Tracer 

## For less than $\$ 8$ you can build this compact, portable signal tracer which operates on a self-contained battery

By FORREST H. FRANTZ Sr.


Tracing a signal in transistor radio.

THE signal tracer is a valuable instrument for the experimenter and technician. It can be used to trouble-shoot radios, amplifiers, and other electronic equipment. This transistorized signal tracer (Figs. 1 and 2) will take only an hour or two to build.

Another of its important functions is that of a universal test amplifier to test microphones, phono pick-ups, and other kinds of transducers. The signal tracer can also serve as an amplifier and speaker for earphone radios.

Because of the printed circuit amplifier it employs (Lafayette PK-522 complete with transistors, $\$ 3.75$ ), the signal tracer can be built quickly and inexpensively. You will appreciate its small size and portability. It has a self-contained speaker and battery, and weighs only a few ounces. No special tools are required.

Construction. Make the necessary small holes in the plastic case with a heated ice pick. Place the speaker inside of the case in the position shown in Fig. 3A and use the speaker as a template to make the four mounting holes. Remove the speaker from the case and make a series of random holes (see Fig. 3B) for speaker sound. Make two holes


Compact unit is a versatile troubleshooter.
$11 / 16 \mathrm{in}$. from the respective case edges with the heated ice pick to establish centers for the jack J1 and volume control R2-S mount. ing holes. Enlarge these holes to $1 / 4 \mathrm{in}$. diameter with a taper reamer.

Cut off excess plastic built up around small holes and wash the plastic case in soapy water. Rinse in clear water and dry thoroughly.

Next, cut the shaft of volume control R2-S with a hacksaw to a length of $3 / 8$ in. Place the portion of the shaft to be discarded in a vise and catch the control as it falls free to prevent damage. Mount the speaker, R2-S, and J1. Connect C1, R1, and the ground wire as shown in Figs. 3A and 3B. Use resin core solder and a hot clean soldering iron. Be careful not to overheat the parts, and be especially careful not to melt the plastic case. Set the case aside for final assembly later.

Amplifier Modification. Figs. 4A and $4 B$ show the amplifier as you will receive it with all leads attached. Use the instruction sheet which comes with it to supplement the figures which appear in this article.

Disconnect and remove the $30-\mathrm{mfd}, 10$-volt capacitor on the bottom side of the amplifier board (see Fig. 4B). Be careful to note polarity and connection points. Install this capacitor on the top of the amplifier board and connect to the same points as before, with


Mounting speaker and volume control.
leads inserted througb the top of the board (see Fig. 4C).

Next, solder resistor R3 in the circuit on the bottom side of the board. One end of R3 connects across the points to which the red and orange volume control leads are connected. Remove the red and orange volume control leads. The other end of R3 connects to the broad ground strip (top edge of board, Fig. 4D). Disconnect and remove the green volume control lead.

Now, solder two $23 / 4$ in. lengths of No. 22 bare, solid wire to the amplifier board ground strip (see Fig. 4D), keeping in mind that these two wires should be positioned in such a manner that the amplifier can be attached through the speaker magnet frame as shown in Fig. 6 B . A trial or two may be required to obtain satisfactory positioning..

Wiring. With the case assembly and amplifier in the relative positions shown in Fig. 6A, complete the amplifier wiring. The schematic (Fig. 5) may be helpful.

Connect the green amplifier input lead to the ground terminal on R2, the blue input wire to the center terminal on R2, and the


View showing holes drilled for speaker sound.
red and orange switch leads to the terminals of switch S . Connect the black and yellow amplifier output leads to the speaker terminals.

Position the amplifier for mounting as shown in Fig. 6B. Pass the two pieces of solid wire through the inside of the speaker magnet frame, bend them around the outside of the frame, cut them to length, and solder them to the ground strip along the upper edge of the amplifier. This arrangement will hold the amplifier in place securely. Be sure that amplifier components or leads do not short against the volume control switch, jack, or speaker terminals.

Fasten a piece of tape to the battery (Fig. 6A), to prevent it from shorting to the speaker terminals. Fasten the battery connector to the battery, and insert it in place (Fig. 6B). Attach a small grommet to the battery case (with rubber cement) to hold the battery in place when the back of the case is closed.

Make a narrow groove on the face of the volume control knob with a hacksaw or triangular file. Fill the groove with white India ink or white paint. Wipe off excess from the front of the knob, and fasten the knob on the shaft of R2-S.



Amplifier before modification with original position of $30 \mathrm{mfd}, 10$ volt capocitar to be relocated.



4D

Amplifier after modification, the capacitor having been relocated.

To Test the Signal Tracer, turn the volume switch all the way up. Place your finger on the tip terminal of J1. You should hear a hum if everything is OK. If not, check for wiring errors, shorts, poor connections, and a bad battery. You'll rarely find bad parts among new purchases.

The Test Lead for use in audio signal tracing includes a miniature plug (part of Lafayette MS-370), shielded wire, and two Minigator clips for connection to the circuit under test. Remove about an inch of the outer insulating sheath; and, with an ice pick, loosen the metal braid on the shielded wire back to the sheath. Twist the shield strands together. Strip about $1 / 4 \mathrm{in}$. of insulation from the cen-

ter conductor. Slip the plug handle over the center conductor and the shield. Solder the center conductor to the center (tip) terminal on the miniature plug and solder the shield to the shell terminal of the plug.

Tape as required to prevent shorting and fasten the plug handle. Strip the other end of the shielded wire and fasten the Mini-gator clips. Tape center lead down to the Mini-gator clip handle for strain relief and identification.

MATERIALS LIST-TRANSISTORIZED SIGNAL TRACER

| Desig. or No. | Description |
| :---: | :---: |
| R3 | $4.7 \mathrm{~K}, 1 / 2$ watt carbon res |
| R1 | 220k, $1 / 2$ watt carbon resistor, $10 \%$ |
| R2-S | 10 K miniature volume control with switch (Lafayette VC. 28) |
| Cl | . 01 mid., 600 volt tubular capacitor (Lafayette C.503) |
| AMP | 3 transistor subminiature audio amplifier (Lafayette PK. 522) |
| SPKR | 21/2"'PM speaker, 10 ohm voice coil (Lafoyette SK-66) |
| J1 | miniature jack (Lafayelte MS-370 includina plug) |
| B | 9 volt battery (Burgess 206) |
| 1 | miniature knob (Lafayette MS-185) |
| 1 | $11 / 8 \times 31 / 8 \times 37 / 8^{\prime \prime}$ plastic case (Lafayelte MS-298) |
| 1 | $30^{\prime \prime}$ single conductor shielded wire (Beiden 8411) and 2 Mini-gator clips (Mueller 30) for test lads |
|  | Parts for this project may be obtained from Lafayetfe Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y. |



Final assemble


## 7 A

## CONNECTIONS FOR SIGNAL TRACING LEAD



With this test lead you can trace signals in the audio portion of radios, audio amplifiers, and other low frequency radio equipment. You can also test microphones, phonograph pick-ups, vibration transducers, and other "energy changers." When you use it as a test amplifier, connect the test lead shield to ground and the center lead to the high point in the unit under test.

RF and IF Uses. To use the signal tracer in the RF and IF portions of a radio receiver, you'll need a detector attachment such as that sketched in Fig. 7. This detector is similar to the detector in radios and performs the


SCHEMATIC AND PICTORIAL SKETCH OF DETECTOR ATTACHMENT FDR RF SIGNAL TRACING
same job. You can build it on a piece of bakelite or stiff cardboard, or into a small plastic tube.

When you are signal-tracing in a radio or amplifier, the signal should become stronger as you progress from the input to the output end of the unit. If the unit under test is inoperative, you will encounter a point where no signal is present. This localizes the trouble between the no signal point and the last point at which the signal was present. Then it's an easy matter to pinpoint the trouble with voltage measurements and other conventional tests.

## Pyramidal Soldering Iron Stand



- You can stand or toss this temporary soldering iron rest onto the bench, and use it in whatever position it comes to rest. Shaped like
 a pyramid, all of whose sides are equal, it can-
not fall over and always rests on a firm base. In addition, it does not get warm in use, as the two small points in contact with the iron do not transfer enough heat to warm up the mass of the metal. Cut out the stand from a piece of 20 gage sheet metal (steel, brass or aluminum) and file to shape. Bend stand to a $60^{\circ}$ angle across the middle, making a sharp corner. This will close up wide notches at each end of the bending line to approximately the same size as the others.-L. C. Mason.


## Ventilate Your TV Seł

- Television sets develop a lot of heat and sometimes the only provision for ventilation is a series of holes punched in the back panel. Continued overheating can short-
 en the life of those costly television tubes.

To get more ventilation, replace the panel with a simple frame covered with plastic screen such as is shown above.-W. H. McClay.

Low range on most ohmmeters is 0 10 1,000 ohms. This meter gives you dependable readings of low ohmage parts such as this speaker coil. You can calibrate the meter to read even in fractions of an ohm.


## Low Range Ohmmeter

Low scale on most ohmmeters is 1,000 ohms. This meter can read down to fractions of one ohm!

By GUS WESENFELD

QUITE a few electrical and electronic parts such as ballast resistors, lamp filaments, speaker coils, and extension lines have resistance so low it cannot be read accurately, or at all, on the ordinary volt ohmmeter. This project which priced out at less than $\$ 12.00$ does the job.

Though the circuit values in the schematic (Fig. 5) provide for a low range scale reading from $1 / 2$ ohm to 25 ohms, you can easily set up a low range reading from $1 / 10$ ohm to 2 ohms, or any other similar range. This can be done by lowering the value of R3, explained later.

Cut the Holes in the plastic case panel (Fig. 2) with a fly cutter and drill press, or hand coping saw. Thin spiral blades work best. Before you lay out your holes, check the parts for size. Though a $0-1$ milliammeter is shown, you can substitute practically any available milliammeter, even a 0-10 ma. meter.

Mount all parts in position, except the meter, safer in its shipping carton until last. Use any thin sheet metal for the chassis. It is held in place by the two upper screws that fasten the switches to the panel. Mount rectifier D1 in place on its mounting stud, and check all wiring carefully.

Pretesting. Turn R1 and R2 counter-clockwise as far as possible. Switch SW1 to off and SW2 to high range. Plug in the ac power cord, and with a vom set for a-c, check voltage across the transformer input. It should read 12.6 volts. Next close switch SW1 and measure d-c across capacitor C1.



The filament transformer is housed in a small aluminum box (fop). Mount the silicon rectifier on an L-shaped aluminum bracket. It is located between the meter and capacitor fastened to the panel with the top switch mounting holes.


This should be about 16 volts. Turn S1 off and plug test clips into SO-1.

With your vom on a 10 ma. range, clip the leads to the low range ohmmeter test clips. Turn switch SW1 to on and slowly turn R1 up until the vom reads half scale. Then turn R2 clockwise to bring the meter to full scale. If either test causes the meter to swing down
No.
M1
D1
T1
R1
R2
R3
C1
SW-1
SW-2
S0-1
P1
1
1
1
1
$M i s c . ~$
Sources

MATERIALS LIST-LOW RANGE OHMMETER Size and Description
0.1 ma Meter, Olson Radio \#ME-68

2 amp silicon rectifier, Olson Radio \#RE. 66 or equal 2.6v filament transformer. Olson Radio T. 304 $5000 \mathrm{ohm} 1 / 4$-watt potentiometer, Lafayette VC. 937 $20,000 \mathrm{ohm} 1 / 4$-watt potentiometer, Lafayette VC-43 3.9 ohm, 2 watt, carbon resistor (see text) electrolytic capacitor, $25 \mathrm{mfd}, 25$ W.V., Lafayette \#C. 129
SPST slide switch, Lafayette \#SW-14
DPST slide switch, Lafayette \#SW. 16
Cinch-Jones chassis mounting 2 conductor socket弁S-2402-DB (Allied $=22 \mathrm{H} 481$ )
Cinch-Jones 2 conductor plug, \#P-402-CCT (Allied \#40.H-910)
set of universal test leads, Lafayette \#F. 373
minibox, $23 / 4 \times 21 / 8 \times 15 / 8$, Lafayette MC. 358
plastic case, $61 / 4 \times 3 \frac{1}{4} \times 2$, Lafayette MS-216
panef for above, Lafayette MS-217
6.32 th machine screws, line cord

Olson Radio, 260 Forge St., Akron, Ohio
Allied Radio, 100 N . Western Ave., Chicayo 80, 111. Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., New York
scale, reverse pot connections. With tests finished, complete assembly by installing the milliammeter.

Calibration requires you remove the plastic meter cover. Pry it up with a thin screw driver at several places until the cover snaps off. Use a small sharp screw driver to remove the meter scale plate and replace with a dial (Fig. 4) drawn on white card stock.

Let's assume that you want low scale to read $0-25$ ohms. Place a zero mark about $1 / 4$-in. left of the meter's full scale point. Clip a 3.9 -ohm resistor across the test clips, set R1 to low and switch SW-1 on. Slowly turn R1 clockwise until the meter reads at the new zero mark. Turn SW-1 off, and clip a $25-$ ohm resistor in parallel with the 3.9 -ohm resistor. Turn SW-1 on. The meter should rest about $1 / 4-\mathrm{in}$. to the right of zero left. If the needle rests too far to left, you will need a larger value, say 4.3 ohms. If it is too close to zero, try a smaller resistor such as 2.9 ohms. During trials never remove the resistors from the test clips without turning SW-2 off.

After soldering the shunt resistor into the instrument circuit, calibrate the other scale points using 4 or 5 intermediate resistors. When the shunt is in place, you no longer need to turn SW-2 off when changing resistors. Accuracy of the meter depends on the
calibration resistors, for example, if you use $1 \%$ resistors you'll get accuracy around $2 \%$.

Calibrating the High Range. Whenever you switch from range to range, be sure to turn the unit off to protect the meter. On high, turn R2 clockwise until the meter reads at the zero mark established earlier. Again use about 5 different values of resistors to mark points on the scale. Ink in your numbers, and replace the plastic cover.

Any low ohmage range can be calibrated. For example if you want a $1 / 10$ to 2 ohm scale, select a trial resistor, say 2 ohms and test as before. Then add another 2 ohm resistor and note the meter deflection. The object is to select a shunt that allows the meter to indicate top value at the desired point on the scale. You'll find the meter may require occasional zero adjustment to compensate for varying line voltage.

# Pushbutton MUSIC BOX 

By C. A. KITT

THIS musical toy can be enjoyed by children of all ages, and can be built in less than an hour for a cost of $\$ 3$. To suit your taste in music you have a choice of tunes: "Moonlight Serenade," "Smoke Gets in Your Eyes," "How Dry I Am," "Around the World in 80 Days."

There's no winding. The Swiss-type musical movement is driven by an electric motor energized by a self-contained flashlight battery and pushbutton switch. Depending on who is going to use the music box, the switch can be either the high- or low-pressure type. If low, its leaves will have to be adjusted to obtain desired operation.

Construction. You can house the unit in a small plastic case, which can be sealed shut with Duco or plastic cement if desired. Install the pushbutton switch in a $1 / 4-\mathrm{in}$. dia. hole centered $1 / 2 \mathrm{in}$. from the edges of the case. Then place the musical movement and battery in the case, secure a good fit, and mark mounting holes for the movement. Be sure that the gear wheel on the drum of the movement does not rub against the case.

Make starter holes in the case with a heated ice pick. Enlarge holes to size with a taper reamer and clean them out with a knife.

| MATERIALS LIST-PUSHBUTTON MUSIC BOX |  |
| :---: | :---: |
| No. | eq. Description |
| 1 | Momentary contact switch low pressure (Lafayette MS-449) or high pressure (Lafayette SW-70); low pressure recommended if toy is intended for a baby. |
| 1 | Electric music box movement-"Moonlight Serenade" (Lafay. efte MS-760) <br> "Smoke Gets in Your Eyes" (Lafayette MS-761) <br> "How Dry I Am" (Lafayette MS.762) <br> "Around the World in 80 Days" (Lafayette MS-763) |
| 1 | Battery (Eveready 935 or Burgess C) |
| 1 | $1 \times 25 / 8 \times 35 / 8^{\prime \prime}$ plastic case (Lafayette MS-159) |
|  | Above parts can be obtained from Lafayette Radio, 111 Jericho Turnpike, Syosset, N. Y. |

Mount parts and solder the connections, using clean, well-tinned soldering iron and resin core solder. Roughen battery surface to be soldered with a file, then apply soldering heat to the battery for as short a time as possible. Observe correct battery and motor polarity so that movement does not run backward or stick.

If you wish to hide the contents of the case, remove them and paint the inside surfaces of the plastic. This way, the paint will not come off and endanger children.

If you want light with your music, connect a flashlight bulb in parallel with the musical movement. The box will then light up when the switch is depressed.


Top view showing high-pressure pushbutton switch.

# Adjustable Mike Stand for \$1.50 

Build it for your tape, recorder, ham transmitter, club, school, or church

By ART TRAUFFER

$y$OU'LL have to look closely to realize that the professional appearing microphone floor stand in Fig. 1 is a homemade job. This stand of many uses rests firmly on its three-point wooden base, adjusts freely for any height between approximately 31 and 56 in., and will fit the sockets of all standard mikes.

With some help from his scrap box, the average home craftsman can build the mike stand for less than a dollar. Even if you have to buy everything, the cost should not exceed $\$ 1.50$.

Base Preparation. Any knot-free and crack-free slab of wood $11 \times 13 \mathrm{in}$. or larger and at least an inch thick will be satisfactory for the base. You can build this slab easily by gluing together two scrap pieces of $3 / 4-\mathrm{in}$. plywood. The author used yellow pine, which he happened to have on hand. Draw the base layout directly on the wood as in Fig. 2, then cut out the three-legged base with a jigsaw or hand saw. The wood need not be perfectly flat. Since it will set on three points, it cannot rock. File down the saw marks, and round off the ends and sharp edges, sand all surfaces smooth.

The Stationary Upright Tube used is a Newell adjustable closet pole, commonly available in dime stores. You can try other makes, but where diameters differ, you'll need to modify other dimensions accordingly.



No fussing with a set-screw here. When the little miss has finished her solo, the master of ceremonies can take over the mike after friction-sliding it to suit his height.

Remove the metal flanges at each end of the rod by prying out the restraining lugs as in Fig. 3.

Measure the diameter of the adjustable rod you have selected and use the next size smaller drill to bore a hole in the base as in Fig. 4. Carefully ream the hole to make a tight fit with the open end of the large tube. Force the tube through the hole and bend the two lugs outward against the bottom of the base. Now cut a slightly oversize round wood plug from $3 / 4-\mathrm{in}$. doweling or scrap and drive it into the end of the tube to secure it tightly to the base.

Finish the wood to match or contrast with other wood pieces in the room where you intend to use the stand. The author applied two coats of a good quality gray paint for a close match with the silver-lacquer coating on the tubes. When dry, attach a screw-type rubber


Remove lube fange by prying lugs oul with a screw. driver. Do not cut or bend lugs back until pole has been installed in base.
bumper under the end of each leg of the base. This will allow the metal lugs on the end of the tube as well as any unevenness in the wood to clear the floor, assuring a firm, threepoint support.

Preparing the Tube Top. The most important step is to fit the top end of the telescoping tube with $5 / 8-27$ threads to hold the mike. There are several ways to do this, but the author feels that his method is simple and it also insulates metal mike heads from the metal stand. This is an important safety factor, for shocks have resulted from touching two metal mike stands which were at different ground potentials, or from touching a metal mike stand while the body was grounded.

Remove the hex nut and washers from an Amphenol $75-\mathrm{PC} 1 \mathrm{M}$ chassis unit, which is a non-shorting microphone connector. Place an insulated washer about $13 / 18-\mathrm{in}$. od and $3 / 8$-in. id on the chassis unit shank. Then twist the


Insulated installation of connector, ready for any standard mike.

13/16"00×3/8"ID FIBER OR PLASTIC

## 5A

5/8"-27 THREADS FIT STANDARD MIKE


1/8-PIPE COUPLING


[^4]chassis unit tightly onto one end of a $1 / 8$-pipe coupling as in Fig. 5A. Tightly wrap enough $3 / 4$-in.-wide tape around the pipe coupling so the coupling fits snug into the end of the draw-tube (Fig. 5A). Push the coupling into the end of the draw-tube and then wrap two or three turns of $3 / 4$-in.-wide tape tightly around the outside end of the tube (as in Fig. 5). The author used gray Mystik-Tape to match the stand and base.

Friction holds the telescoping tube within the larger tube, so it isn't necessary to make a set-screw for this purpose. To increase the friction, simply spread the open seam at the bottom of the small tube.

Some microphones make their cord connections right through their sockets. If yours is this type, drill a hole through one side of the small tube, close to the pipe coupling, and insert a rubber grommet (as in Fig. 5A). Pass the mike cord through this opening and connect it to the Amphenol chassis unit. Solder the center lead of the mike cord into the eyelet of the chassis unit in the usual manner. The outside shielded lead of the mike cord should be soldered directly to the bottom end of the pipe coupling.

WRAP TAPE AROUND PIPE AFTER INSERTING
COUPLING FOR SNUG FIT ABOVE ASSEMBLY COUPLING FOR SNUG FIT IN ENO OF DRAW-TUBE. WRAP 3/4" TAPE TIGHTLY AROUND TUBE.

OPTIONAL: DRILL HOLE INSERT RUBEER GROMMET FOR MIKE CORD.

telescoping tube of floor stand. twist chassis unit into pipe coupling.

PREPARED TOP OF TELESCOPING DRAW-TUBE

## Tune 7a Europe for \$13

## DX the Short Waves With a

 Crystal Diode RadioBy FRANK WOODS Jr.

RECENT availability of truly compact, high gain transistor amplifiers should whet the appetite of the DX experimenter for bringing in distant shortwave stations on a simple crystal diode tuner.

The basic tuner in Fig. 2 pulled in SW transmitters in England, Switzerland and other distant lands when used with modest amplifiers as in Figs. 1 and 4. Using only a 9 -volt transistor radio battery for power, a $6-\mathrm{ft}$. length of insulated hookup wire for an antenna, and a similar wire for a lead to a water pipe or other good ground, this rig operated a loudspeaker at comfortable listening volume and provided moderately good selectivity for such a modest tuning arrangement.
New parts for this tuner need not exceed $\$ 3$, while a $\$ 10$ bill will take care of at least one of the amplifiers described herewith.

Technical Considerations. Many shortwave stations operate with much more power than the strongest broadcast band stations. Also, shortwave signals travel greater distances than ordinary broadcast band signals. Consequently, the receiving antenna and ground might well deliver about 100 micro-

"Triple-C" basic tuner comprises coil, sapacitor and crystal.


Shortwave fun in a small and simple package; the crystal diode tuner combined with a modified "Quickie," three-transistor portable.
volts to the receiver on a signal from a station several thousand miles away.

An inductance coil ( L ), using a ferrite rod core, and a variable capacitor (C) form the tuning circuit (Fig. 3). This arrangement provides a relatively high $Q$ circuit in the $3.5-7.5 \mathrm{mc}$ frequency range. The Q of the ferrite core coil decreases substantially at the high end of this band.

A quick trial with the output of the tuner connected to an audio vacuum tube voltmeter indicated peaks in the 10 - to 30 -millivolt range when distant powerful shortwave broadcast stations were tuned in. This is more than adequate to operate an amplifier-loudspeaker combination, which arrangement has been particularly attractive since introduction of the low-cost imported transistor amplifiers.



Tuner combined with powerful sub-minioture, fivetransistor amplifier. All companents can be attoched to the breadboard or installed in an ald radio cabinef.

One of these, Lafayette \#PK-522 is a threetransistor job and costs but $\$ 3.75$. A fivetransistor model, Lafayette \#PK-544, is priced at $\$ 6.95$. If you already have it, you can use a high gain amplifier in your experimental work, but most high impedance input ac-operated tube amplifiers will not perform as well with this SW tuner as \#PK-544.

Building the Basic Tuner. Obtain the parts listed for Project I in the Materials List. Wind 13 turns of the \#18 insulated wire (preferably cotton-covered) close, but not tight, on the ferrite core. Leave about 4 in . of lead on each end of the coil, then pull the turns apart until the winding is about 3 in . long.

Connect the coil (L) to the capacitor (C) as in Figs. 2 and 3, running one lead to a stator lug and the other to the rotor (frame). Use resin core solder and a clean, well-tinned soldering iron. Also solder the diode to one of the stator lugs. To limit the heat reaching the diode, hold it with needle nose pliers between the soldering point and the diode body.

Cut two 6 -ft. lengths of insulated hookup wire. Solder one (the antenna) to a stator lug on the capacitor and the other (ground wire) to the rotor lug. Attach an alligator clip to the other end of the ground.

Cutting the capacitor shaft to length and housing of the tuner are left to the discretion of the experimenter. However, if you do decide to shorten the shaft, place the end to be discarded in a vise before hacksawing. You may damage the capacitor if you hold the frame in a vise while sawing.

Output connections depend on the type of amplifier you choose later. Dial ideas and calibration procedure will be considered after the amplifiers are described.

Tuner Plus \#PK-544 Amplifier. If you decide to tie in this tuner with Lafayette's new 5 -transistor subminiature push-pull audio amplifier, add parts listed in Project II of the Materials List and wire according to Figs. 4 and 5. Solder the orange leads from this am-

plifier to the switch (S) and the black, yellow, and green leads to the volume control (R1). Connect the black lead to the low volume end lug and the yellow to the center lug.

Run the black input lead to the capacitor rotor or frame and the blue input lead to the diode. Attach black output leads to the speaker voice coil lugs. The speaker is not specified in the Materials List; nearly anything you have will do. While the amplifier is designed to couple to an 8 - to 11 -ohm speaker, this doesn't matter too much since you're not concerned too much about fidelity of shortwave reception. Here are possible speaker-case combinations using Lafayette stock numbers:

1. Speaker \#SK-66, $21 / 2$ in., 10 ohms, $\$ 1.49$; mounted on \#ML-81 perforated Masonite board, 25 , or mounted in $11 / 4 \times 3 \% / 16 \times 45 / 18-$ in. plastic case, \#MS-162, 32¢.
2. Speaker \#SK-108, 4 in., 3-4 ohms, in wood baffle, $\$ 3.25$.
3. Good speaker from discarded radio left mounted in the radio case.
If you wish to assemble the entire rig in a single case after you've finished preliminary experimenting, any small radio cabinet will do. You can also assemble it on the perforated hardboard.

With.General Purpose or Hi-Fi Amplifier. The tuner may be connected to any high gain battery or ac-operated amplifier you have. However, do not use an ac-dc amplifier (transformerless power supply) because the grounding situation is potentially hazardous. Attach tuner as in Fig. 6 with shielded cable and plug (see Project III in Materials List). Connect the shield lead to the tuner capacitor frame and center lead to the diode and other end of the cable to a phono plug to fit your amplifier.

Modifying the Portable "Quickie." This tuner adapts well to "Quickie," the threetransistor portable radio described on p. 41, with just a few changes needed in the transistor set (Project IV in Materials List).

1. If you have already built Quickie, remove or disconnect the broadcast coil (L1); if now building it, omit this coil.
2. Make a hole near each end of the top of the plastic case, using the heated point of an ice pick to insert the shortwave coil (L) leads (Figs. 1 and 7).


6 (PROJECT III)


Rear view of crystal diode tuner encased with "Quickie."
3. Connect the shortwave coil across the variable capacitor on the Quickie.
4. Use the $6-\mathrm{ft}$. insulated hookup leads prepared for the tuner as antenna and ground leads on the Quickie.
General Operating Tips. Clip the ground lead to a radiator, water pipe, gas heater, or any other available ground. Spread out the antenna lead, but keep it away from radiators or other grounded objects. If you use a long outside antenna, couple it to the tuner antenna through a $50-\mathrm{mmfd}$ mica capacitor.
You can tune in stations either by rotating the tuning or variable capacitor or by moving the coil core in and out of the coil. While the capacitor is intended for this purpose, the possibility of coil core tuning is worthy of mention because it demonstrates permeability tuning.

You can provide a tuning dial scale by attaching a filing card to the tuning capacitor frame. For calibration points, mark the frequency of the stations you log at the pointer knob settings. Better still, calibrate with a

MATERIALS LIST-CRYSTAL DIODE RADIO
Desig. or Na.
Description
PROJECT I-BASIC TUNER
C midget 1 -gang TRF tuning capacitor (MS-214) $1 / 4^{\prime \prime}$-dia. $\times 71 / 2^{\prime \prime}$ ferrite core (MS.331) plus insulafed \#18 magnet wire (see text) erystal diode (Raytheon 1N60) pointer knob (KN-40) allipator clip ( $\mathrm{CN}-268$ ) insulated hookup wire

PROJECT $\|$-TUNER PLUS COMPACT AMPLIFIER Tuner parts listed under Project I
AMP 5.transistor push-pull audio amplifier (PK-544)
R1.S miniature potentiometer and switch (VC.28)
SPKR see text, Project II
B $\quad 9$-volt battery (BA-2)
miniature volume control knob (MS.185)
PROJECT III-WITH GENERAL PURPOSE OR HI-FI AMPLIFIER

| Tuner | parts listed under Project I |
| :--- | :--- |
| AMP | any battery or ac-operated high gain amplifier |
| PL | RCA-type phono plug (MS-167 fits most hi-fi am |
|  | plifiers) |

PROJECT IV-MODIFIED QUICKIE 3.TRANSISTOR
PORTABLE
Quickie all parts listed in material list on p. 42 except Ll
Others parts listed under Project I except C and D whic appear as Cl and DI in Quickie circuit

Except where otherwise identified, stock numbers are those of Lafayette Radio Elettronics, 111 Jericho Tpke., Syosset, N. Y.
signal generator, if possible. If you don't own an RF signal generator, you may be able to use one at your high school, or at a technical school or college.

Crystal tuner shortwave reception doesn't begin to meet the requirements of the serious ham, but it does provide an interesting series of experiences in hearing DX on extremely modest equipment.

## Extending Componenł Leads

- After the same components have been soldered into several different experimental circuits which then have been dismantled, the length of the
 leads gradually becomes shorter until the parts are no longer usable. You can extend such leads for further use by splicing on a $2-\mathrm{in}$. length of bare wire about the same diameter as the component lead. Wrap several turns of \#22 or smaller bare wire tightly around the larger wire, near one end, to form a connecting sleeve. Scrape both wires clean or remove any enamel coating with solvent. Then push it up until it extends partly beyond the end of the wire. Insert the short component lead into the end of the sleeve and sweat-solder it, using resin sparingly. Grip the short lead with pliers during soldering to prevent overheating the component.-J. A. Сомstock.


Unhampered by a tiny cabinet, the novice can easily put together this basic circuit in four stages, lesting as he goes along to "see" how a radio works. Scrap wood panel and base afford room to rearrange or add parts.

## Experiments with this receiver will help the student acquire an understanding of radio theory

By C. F. ROCKEY

WHETHER you are a serious beginner in radio theory or just want an effective personal or bedside radio, the quickly-made receiver in Fig. 1 will provide you with many pleasant experiences.
No attempt was made to miniaturize or "doll-up" this project. The beginning student should have room to experiment and move parts around freely. Use of a wooden chassis and panel minimizes tool and bench requirements, and plywood scraps are cheap. You can always build a cabinet later.
Cut the Chassis Shelf as in Fig. 2A from $1 / 4$-in. plywood, tempered Masonite, or plastic. Cut front panel as in Fig. 2B from the same material, but defer mounting it until most of the wiring is completed. Cut two $53 / 4-\mathrm{in}$.-long shelf supports from scrap $1 \times 2$ furring strip (actual size $3 / 4 \times 15 / 8$ in.). Smooth the supports with sandpaper and fasten them to side edges of the shelf with nails or screws as in Figs. 2A and B.
Position the tube socket, transformer, and terminal clips on the shelf as in Figs. 2A and 3 to locate holes for mounting and wiring. Note that no wiring hole is needed for one of the socket lugs. On the underside of the shelf, locate mounting hole for the dry rectifier (Fig. 2A). Locate mounting holes on the front panel (Fig. 2B). Now drill all holes in
panel and chassis, sand surfaces smooth, and finish as desired. On plywood, we applied a walnut oil stain. After the finish dries, attach the transformer, socket, rectifier, and terminals with \#6-32 x $1-\mathrm{in}$. roundhead ( $r h$ ) machine screws and nuts.

The First Step in Wiring is that of the power supply (Fig. 5, Step 1). All small parts are held in place by the short leads with which they are connected into the circuit. "Wherever any of these parts seems "floppy," attach one end to a soldering lug which has been fastened down with a wood screw. As you can see in Fig. 4A, the electrolytic filter capacitors are hung between three lugs fastened to the left-hand chassis shelf support.

An important feature of the circuit design is its "common ground wire" (Figs. 4A, B). This is a piece of \#14 tinned copper or bare copper wire to which each ground is connected. It begins at a soldering lug at the center of the left chassis support, runs under the right-hand power transformer mounting screw, across the shelf to the forward socket mounting screw, and forward to a lug under the variable capacitor mounting screw. Being bare, ground connections can be made anywhere along its length.
Be sure to observe polarity marks upon the dry rectifier and the electrolytic capacitors.

Either a red ring or a plus sign will identify the positive end of each. This end of the rectifier should be connected through the 220 ohm resistor to the power transformer. (Figs. 4A, B). A reversed electrolytic capacitor becomes an electrolytic gas-generator, which


Ferrite tuning coil mounted through chassis is subjeet of many experiments conducted with temporary "hank" form coils.
destroys itself and often some other part. Don't let this happen in your set.

After completing as much as you can of the power supply wiring, including the 6.3 -volt heater lead to pin No. 2 on the tube socket. attach the front panel to the chassis shelf supports with nails or wood screws. Mount the potentiometer with switch on the panel and wire this unit. Install the power line cords and hold it safely in place with an insulated staple driven into the left-hand shelf support as in Figs. 4A, B.
To Test the Power Supply, plug in the line voltage and turn the switch on. Charge a 1 mfd paper capacitor (bought for testing purposes) from point $X$ to the ground wire as in (Fig. 5, Step 1). Upon removing the capacitor and shorting its terminals with a screwdriver, a good spark should be observed. No untoward noises or odors should come from any part so far installed, as long as new parts are used. Should this happen, check for wrong wiring.
If you can obtain a suitable $0-150$-volt voltmeter, measure the voltage output of the power supply from both point $X$ and point $Y$ to ground. Observe the effect of varying the potentiometer knob upon the voltage at both of these points. Temporarily disconnect each filter capacitor, separately, and note the effect upon the output voltage.

Connect the 1 mfd testing capacitor in series with your headphones. Ground the phone lead not connected to the capacitor. Touch the free end of the capacitor to various parts of the filter system and note its effect in removing hum. Note the effect of disconnecting one or both filter capacitors upon the hum level from X to ground.

Experiments such as these, along with intelligent study of a good radio textbook, will do much to develop your enjoyment and understanding of radio.
The Non-Regenerative Gridleak Detector is the stage of the radio to build. In this circuit (Fig. 5, step 2) you will wire only one-

half of the 6SN7-GTB tube. Ignore the other half until later.
Mount the tuning capacitor on the panel, following manufacturer's instructions, and ground its frame to the common ground wire by a lug under the mounting screw. Install a five-turn antenna winding on the ferrite tuning coil as in Fig. 6. Fasten the turns in place with Duco or other plastic-type household cement, and insert the coil carefully into the hole provided after the cement is dry.

Complete wiring the circuit and recheck your work. Connect headphones to their terminals. Fasten an antenna- 50 to 150 ft . long including lead-in to the antenna terminal. Connect the ground terminal to a cold water pipe or other good, outside "dirt" ground.

After the switch is turned on, the tube heater should glow and warm up in a few moments. Advance the potentiometer to maximum voltage position and rotate the tuning capacitor. If within range of one or more broadcast stations, they should be heard clearly. If no signals are audible, and the tube and headphones are good, recheck your wiring and antenna.

Observe effect of the potentiometer setting upon signal strength when the non-regenerative detector is operating. Note the relative capacitance in the circuit for receiving each of the stations in your area, and compare this to their frequencies. Turn the slug adjusting screw on the coil carefully (Figs. 4A, 6) and note the tuning effect.

Take more \#22 heavy Formvar magnet wire and wind a 50 -turn antenna coil over the regular coil in hank form. The regular coil should be left untouched but disconnected. Take off turns of the hank coil one at a time and note the effect upon signal strength and

[^5]sharpness of tuning. This illustrates how to separate stations on different frequencies.

These tests are unnecessary if you just want to build a radio. But to the serious experimenter, they are a truly painless way of learning much valuable theory.

After you have mastered the non-regenerative detector, you are ready to convert it into regenerative form and observe the effects of feedback upon a simple detector circuit. Be sure to disconnect the line voltage when resuming actual building of the set.

The Regenerative Gridleak Detector circuit appears in Fig. 5, step 3, with most connections and parts unchanged. But you'll need to add an additional tickler or feedback winding to the coil system. (Fig. 6). Carefully wind three turns of the magnet wire as close to the main and antenna windings as possible. Cement this winding in place and allow it to dry.
Lift the ground connection from socket lug \#3, and connect one side of the feedback winding here. Ground the other side. That's all there is to it.

Now reconnect the phones, line cord, antenna, and turn on the switch. When the tube has warmed up, advance the potentiometer slowly. The "tube hiss" should increase


Underside of chassis shelf offers plenty of wiring room. Insulated staple on left shelf support protects line cord from undue strain.



## STEP 2: NON-REGENERATIVE GRIDLEAK DETECTOR

sharply at a given point, followed by a soft thud as the voltage is further increased. If this sequence does not occur, reverse connections to the feedback coil, which should correct the condition. This is known as "regeneration." When it occurs, you are "in business."
Set the potentiometer well below the "thud point," and tune in a moderately weak signal. Advance the control, and note the effect of feedback upon signal strength. The signal probably will increase markedly up to the thud point, whereupon music or speech will be marred by an unpleasant squeal. Rotate the tuning dial slowly past the stations and observe the pitch of the squeal and how it varies with respect to tuning.
If you have another radio, tune it to the same station and note any interaction which occurs. For this reason it is always a good idea to keep the potentiometer slightly below the thud point and thus avoid "blooping" other nearby receivers.
You will probably find that addition of regeneration will not make the strong stations much louder. It may even make them weaker, but the quality of reception will be

slug
ADJUSTMENT SCREW

CONNECTIONS TO MAIN FERRITE COIL

HOW ADDITIONAL WINDINGS ARE ARRANGED ON FERRITE COIL


5 SCHEMATICS • STEPS $3 \& 4$ 2 MEG

very much better. You should also hear stations which were inaudible before adding regeneration. As your tuning skill grows, you will receive stations from greater distancesparticularly at night. Also, sharper tuning will "cut through" strong, local stations.
The Audio Amplifier Stage (Fig. 5, step 4) completes the set, and utilizes the second half

, OPTIONAL ANTENNA TUNING SYSTEM FORDX
of the 6SN7-GTB tube. Wire in the three remaining resistors and capacitor.

When the audio amplifier circuit is added signal strength of the radio will be increased about 10 times: You'll hear many more stations and local station volume will be vastly improved. Though designed for headphone use, the set may provide enough strength to drive a small, permanent-magnet, dynamic speaker for strong local stations. This will require an output transformer with a primary impedance of 10000 ohms or more.

After you have completed the set, try tuning the antenna circuit. Connect an additional 365 mmfd (maximum) variable capacitor and coil in series with the antenna as in Fig. 7. You will find this a great help in picking up distant stations. The writer has been able to receive $W Q X R$ on 1560 kc , even though this New York station is almost a thousand miles away.

If you know the code, or are learning it, connect a 200 mmfd mica fixed capacitor directly across the tuning capacitor. You will then be able to receive radiotelegraph signals (CW) from ships and shore stations.

# Multiple Channel Crystal Selectors 

## Even hams licensed to use VFO will find a big 24-way rotary switch for crystals much faster and more convenient for a spot operation

By HOWARD S. PYLE, W70E

DESPITE the great popularity of the variable frequency oscillator, many thousands of amateurs cling to the use of quartz crystals, either as an adjunct to their VFO or for crystal operation exclusively.

Regardless of your class of license, it is a pretty sure bet that you have two or more crystals handy. I have nearly 30 available, even though I am also VFO-equipped. Those little rocks are mighty convenient for spot operation, particularly when so arranged that they can be switched instantly. What a difference there is when you no longer have to paw through the box searching for the right frequency and then, when you finally find it, trying to plug it in while digging into a dark, recessed panel opening and groping for the contact holes in the socket!

Now making it all worth while is a subassembly comprising 24 crystal sockets and a 24 -point rotary switch. Introduced recently by the International Crystal Mfg. Co., 18 N . Lee St., Oklahoma City, Okla., the unit (Fig. 2) is compactly mounted with an appropriate dial plate and comes completely assembled and tested. With a few minutes' work, you can install it in its own external cabinet as in Fig. 1 for use with any transmitter equipped with a plug-in crystal socket. It is available from International dealers or the manufacturer for $\$ 12.95$ plus shipping charges.
The switch should hold great interest for novices as well as more advanced ham operators. Restricted by their licenses to crystal operation, novices may nevertheless use any number of crystals as long as their frequencies fall within the limits of the novice band. Separate crystals are required for the $80-, 40$-, and 15 -meter bands. This is also true of the novice 145-147-mc band, though few attempt operation there as it requires an additional transmitter and receiver in most cases.
The average novice, then, generally has at least three crystals if he desires to work in his three lower frequency bands, or two to three for a single band if that is his choice. But many have several for each band for greater flexibility of operation.
General and extra class amateurs in large numbers keep a number of crystals available for spot frequency schedules as well as for participation in one or more social or traffic nets. They prefer to merely plug in or switch to the proper crystal at the scheduled time without "whishing" and "zooping" their VFO to find zero beat.


External 24-channel crysial frequency selector fitted with coaxial cord and plug to fit crystal socket in the trensmitter.


Fully wired 24-point switch shown as it comes from manufacturer.


The switch was made to order for them, and for me with my 17 scheduled contacts on prearranged frequencies.

Mechanical Assembly of such a unit, whether in an external cabinet as in Fig. 1 or integrally with the transmitter, is simple. One-hole mounting, the same as for a rotary
switch, variable resistor, or phone jack, is all that is required. I mounted the sub-assembly in an LMB- 140 aluminum box chassis, attached a big knob obtained from a piece of war surplus gear, and fitted the dial decal furnished with the switch assembly.

Next, I mounted a card holder frame with a

Side views through chassis box. Left, view toward rear, showing position of switch and how coax cable connection is carried through back panel. Right, view toward front showing sub-plate mounting ready for installation of crystals.



Three-channel crystal selector sub-assembly includes sockets, mounting frame and knob. Right, the threepoint switch installed within a Knight-Kit T-50 amateur transmitter.
plastic window (removed from surplus equipment) on the cabinet top and slid a typed index card listing dial numbers versus frequency under the plastic. All you need do is run a finger down the chart to the frequency you want, match it to its number, and set the switch. This is much faster than setting the VFO. It is surprising how rapidly you will memorize most of your commonly used frequencies so that you can select them without reference to the chart. If preferred, you can neatly mark each frequency or band alongside its equivalent number on the dial plate, using small decals available at ham supply stores.

Wiring Is Extremely Simple. Since all sockets are factory-wired to the switch points, you need only run one wire from the common connection which ties the sockets together on one side, and another from the blade of the rotary switch, as in Fig. 3.

If you're mounting the switch assembly within the transmitter, terminate the opposite ends of these two wires on the two contacts of the existing crystal socket in the transmitter, letting the original two wires remain there. The socket terminals will then form a terminal tie-point.

It's a good idea to cement a small cardboard disk over the face of the original socket to prevent your unthinkingly plugging in a crystal from the face of the transmitter. There's no harm done if you should do this, but two crystals in parallel will hardly be operative!

If you wish to mount the crystal selector assembly in a separate cabinet, connect the

braided shield of a short length of \#RG58 U coaxial cable (not over 18 in. long) to the common terminal of the sockets. Connect the center conductor of the cable to the switch blade terminal. Fit the opposite end with a standard twin-lead plug such as Mosley 301.

In addition to the 24 -point unit, these combination switch and socket sub-assemblies are also available for 3 or 12 channels (priced at $\$ 2.75$ and $\$ 7.50$, respectively). All three sub-assemblies have sockets to fit the increasingly popular crystal holder using .050 in . dia. pins spaced 486 in. between inside faces. Check your crystal holder pins for these dimensions if you already have a stock of rocks. If you buy them new, specify this spacing and diameter-they are now standard with most crystal manufacturers. Those made by International Crystal for these switching assemblies are designated as type FA-5 amateur crystals (and holders).

If You Have Larger-Diameter Crystals, such as Bliley AX-2 or Petersen Z-2, you won't find it difficult to make up your own socket-mounting plate with whatever number of sockets you choose. A Centralab, Mallory or similar phenolic-base rotary switch will serve excellently for the selector. These are available in many types and sizes at your local ham store or from the electronic mail order houses.
Choose a single-pole type witl sufficient positions to accommodate all of your sockets. Mounted in a small cabinet or in your trans-
mitter cabinet, it will serve every bit as well, as those described here, but will necessarily require a somewhat larger space.
You'll find operation with such a crystal selector arrangement to be a real pleasure. When your net control station tells you to go up or down 5 or 10 kc , merely flip your switch to the proper crystal and there you are! For shifts of up to approximately 10 kc either side of net frequency, you normally will not need
to adjust your grid drive, re-dip your final plate nor tune your antenna; just flip the crystal switch and go to it. A wider frequency departure-15/25 kilocycles, perhaps-may call for a slight touching up of these controls.

If you're experiencing bad QRM on a schedule or during a casual QSO, tell your man at the other end to go up or down 5 or 10 ke, flip your switch and call him-it's that easy.

## Compass Galvanomemer

MANY electrical measuring instruments are based on the design of the d'Arsonval String' Galvanometer, but substitute a needle-suspended coil riding on jeweled bearings for the hanging coil employed in the original precise lab instrument.
The galvanometer is not often used to measure quantity of current flowing in a circuit, but usually to indicate the polarity and presence of small currents by comparison methods.
The d'Arsonval instrument suspends a small coil between the poles of a permanent horseshoe magnet. When a current flows through the coil it becomes an electromagnet and its like poles repel the like poles of the horeshoe magnet, thus causing the coil to turn or twist on the metallic string or ribbon by which it is suspended (Fig. 2). The strength of the current determines the extent of the coil's rotation.
A small pointer attached to the moving coil registers on a curved dial, or a tiny mirror is attached to the galvanometer string. A beam of concentrated light is aimed at the mirror, bouncing the beam off to a wall screen or chart to give great magnification of tiny current changes.
Making a Simple Galvanometer. A small amount of insulated magnet wire, any pocket compass and a $2 \frac{1}{4} \times 31 / 2$-in. scrap of plywood is what you need to make the simple galvanometer shown in Fig. 1. Cut a strip of cardboard $3 / 4 \mathrm{in}$. wide and $33 / 4 \mathrm{in}$. long. Score the cardboard $3 / 4 \mathrm{in}$. from each end, with a dull knife blade and crease so the cardboard resembles a $\mathbf{C}$ or bridge shape. Now glue the cardboard to the edges of the wood base.
Bind the cardboard with a rubber band until glue or cement dries. We wound 25 turns of \#28 magnet wire around the cardboard, but heavier

wire and fewer turns will work, too, with a slight dropoff in sensitivity.

Scotch tape is wound around the finished coil to keep the wire turns in place. Connect the ends of the coil to screw terminals or clips. Slip the compass under the coil in a position where its needle comes under the coil and parallel to the coil turns.

Connect the galvanometer in series with a flashlight battery and bulb, a buzzer or a toy motor, etc. When the circuit is closed the compass needle will be drawn so that it is at right angles to the coil (Fig. 1). A slow swing of the needle indicates the circuit is drawing little current. A rapid swing denotes an increase in current flow.

To show how sensitive this simple galvanometer is, connect what appears to be a dead flashlight cell across the terminals, immediately breaking the circuit. The compass needle will spin at a merry clip indicating there is still some life in the "dead" cell.
The compass galvanometer's needle would be the horseshoe magnet in the d'Arsonval instrument. But, here we cause the magnet to turn with the coil remaining in a stationary position. However, the end result is the same no matter how the galvanometer is constructed.-T. A. Blanchard.


## HO-4 Train Control

By ERVING EDELL

BUILD this economical dc power pack for your HO layout and you'll be able to control four separate sections of track for realistic operating action from reverse up through full speed forward.

This up-to-the minute design provides features found on few custom control boards.

Power is ample to run four heavy HO locomotives pulling full-length trains at top speed. An emergency panic button shuts off all power instantly to avoid collisions at crossings. It will also help to prevent damage when cars are derailed.

With practice, you can control four trains at once, running them individually at various speeds, forward or reverse. A circuit breaker prevents transformer burnout if wiring is shorted. Power leads can be fed out to sections of track so your trains automatically slow down (Fig. 9) when they are passing a station or run around curves, and then speed up on straight sections. If your train layout


The power pack handles full grown layouts with ease. If will also enhance the performance of smaller loop layouts providing more realistic control. The unit will handle model race car tracks 100.
boasts more than four trains, or if you want to control additional sections of track, you can double the power pack design or add more control rheostats and switches.

Make the $71 / 2 \times 12-\mathrm{in}$. panel of hardboard or aluminum sheet not over $3 / 16$-in. thick. Following dimensions (Fig. 3) drill the $1 / 2-\mathrm{in}$. holes for the switches and the $3 / 8-\mathrm{in}$. holes for the rheostats. If you are working with a $1 / 4$ in. electric drill, you may want to use a hand reamer to bring the holes up to size. The Mel-Rain circuit breaker requires that you drill three holes to match its mounting plate. You can substitute a 5 -amp Mantua MRC circuit breaker available at hobby dealers.


If the engineer hadn't hit the panic switch, this would have been a three train crash with damage to expensive hand-worked models.


Double or triple the power pack design and you can wire in automatic features that will make your trains behave even more realistically than the mast expensive import layours.

The Panic Button is made of a $1 / 4$-in.-diameter phone plug commonly called type PL-55. A matching single closed circuit jack mounts on the panel, so that when you push the plug down into the jack, the spring contacts open to shut off the dc power. You can use the plug as a safety key to prevent unauthorized engineers from running your layout. Or later on, you can add a control cord (Fig. 4) with a kitchen-type pendant switch that will enable you to control power if you're running the layout while standing some distance away from the central panel.

Use 18 -gauge solid copper insulated hookup wire to connect your switches and rheo-


The model engineer is setting up a track cleaning car. In his hand a pendant switch connected to the panic button plug gives him complete on-off power control from any point in the room.



## MATERIALS LIST-HO.4 TRAIN CONTROL

Amt.
Req.
Size and Description
T1. transformer, open frame type Prl. 115VAC to 17 VAC with center tap. 85 Watt output, 5 amps.*
S1 Sarkes Tarzian Model S-5670 center tap silieon rectifier rated at 4 amps, continuous service at 12 VDC.
R1-R4 Rheostat. 35 ohm 25 watts.
Pointer knobs for above.
SW1, DPST toggle switch, 3 amp, 125 volts.
SW2, 3, 4 and 5 DPDT toogle switches. 6 amp 125 volts Olson Electronics Inc. \#SW156 or equal.
Pilot lamp assembly and bulb for 110 volts.
$\sqrt{ } 1$ closed circuit phone jack, for panic switch.
Pl phone pluy for above panic switch.
Circuit breaker, Mel Rain 5 Amp or equal. *
8 terminal barrier strip. Cinch Jones $\# 8.141$ or equal
$71 / 2 \times 12^{\prime \prime}$ panel. hardboard or aluminum $3 / 16^{\prime \prime}$ thick or less.
15' 18 -gave solid copper hookup wire.
Misc. Wood screws, metal screws, 3 doz crimp.on or solder type terminals.
Note: All of the above items can be obtained at your local elec. tronic supply house. Items marked with asterisk can be obtained in a special kit. Send \$11.95 for Kit No. 4, SCIENCE and MECHANICS Kit Department, Dept. 825, 450 East Ohio Street, Chicago 11, III.
stats. The double-pole double-throw center position off switches provide the forward, reverse, and stop train action by flip-flopping the plus and minus connections to the track. You'll find that wiring is easier and neater if you use crimp-on terminals. There is less chance of poor connection that can cause erratic operation.

In the interests of economy, you can simply use a long-nose electrical plier to form clockwise loops on the end of each lead to fit the screw terminals on the parts. Solder terminals are also a good means of wiring. But be sure to use resin-core solder and a clean iron. Corrosion problems are a sure thing if you use acid-core solder.

If you choose the flush panel method of mounting the control right on your track board (Fig, 6), mount the transformer and rectifier beneath. Be sure to tape all exposed ac leads to prevent accidental shock. If you
(A) Wiring is easy. Just remember that a side of each DPDT switch is connected in series with the rheostat. (B) Power feeds to the center terminals and a crisscross gives you reverse polarity. (C) The silicon rectifiers mount on a heaf sink plate, holes drilled for an exact fit.


Flush panel mounting (6A) versus a sloping panel (6B), the latter sides made of $3 / 4-\mathrm{in}$. lumber cut at a $60^{\circ}$ angle.

decide to make the sloping front chassis mounting, the transformer and rectifier assembly will fit inside. Be sure to allow for plenty of air circulation around the transformer.

The recently introduced silicon rectifiers (Fig. 5) mount in a heat sink which you can make of a piece of sheet aluminum at least 0.14 -in. thick. A full wave selenium rectifier similar to the one shown in Fig. 7 can also be used. You'll find plenty of these older type rectifiers in local salvage and surplus stores.

Run the DC Leads from each rheostat out to an eight-terminal barrier strip. Again, crimp or solder lugs are your best choice for connecting the wires that feed out to the

tracks. A 22 -gauge solid hookup wire is minimum size for track wiring. Lighter gauge wires on long runs will not feed full voltage to your tracks.

An additional optional feature that you can add to your control panel is a slow speed control. Simply wire push button switches across each rheostat. When you push the button, you get full speed, but when the switch is open, your train will run at whatever setting you've got on the control.


## AC Volt Board for \$6



> Simple ll-step power supply offers a variety of voltages to operate tube heaters, test intermittent equipment, correct line current and handle other applications

By FORREST H. FRANTZ Sr.

Checking an ac voltage after connecting transformer leads and iumper wire to proper binding posts.

EXPERIMENTERS and technicians have frequent use for a variable ac power supply. Inexpensive and simple to construct, this ac volt board provides 11 different voltages from 6 to 146, including in-between steps at $19,25,31,84,90,96,115,121$, and 140 volts. It supplies one ampere of current continuously and can be pushed to slightly higher currents for short periods of time.

One of its many applications is to provide odd ac voltages for the operation of radio tube heaters and other electronic or electrical equipment. You may want to use extreme line voltage conditions to test intermittent radios, or you may want to vary the output of de power supplies by controlling the ac input voltage. The volt board can jack up line voltage during low voltage periods, or lower line voltage during high voltage periods. Of course, the current rating must be considered.
Construction. The board base (Figs. 2 and 3 ) is a perforated Masonite board that comes cut to size. Drill an extra $1 / 8-\mathrm{in}$. dia. hole to mount the 25 -volt transformer, L1. Enlarge one of the perforated holes with a drill or reamer to $1 / 2-\mathrm{in}$. dia. to mount the switch, S 1 . Enlarge another hole to $3 / 8-\mathrm{in}$. diameter for the line cord.

Now mount the components using Fig. 2 as a guide, beginning with the binding posts. Insert the black posts on the bottom row and red ones above, fastening each with a nut. A second nut will hold the connecting wire in place when you get to the wiring. Mount the switch, S1, and then the transformers. Note that a two-lug tiedown terminal strip fastens under the inside mounting nut of the 6 -volt transformer, L2, on the top of the board.

Pass the line cord through the top of the board. Tie a strain relief knot in the cord below the board, allowing enough length beyond the knot for circuit connections.

Wire the unit as in Figs. 2, 3, and 4, carefully noting the numbering diagrams given for the transformers in Fig. 4B. Don't cut the transformer leads to length; for, if you get a set of transformer connections reversed, you won't have any trouble changing leads. Solder connections to the switch and tiedown strip, using rosin core solder and a clean soldering iron. Tape these connections as an additional safety measure. I purposely did not tape these in the model so that construction details would be readily seen.

Cut and fasten wooden supporting strips as in Fig. 3, using almost anything you have

## TABLE 1-BINDING POST CONNECTIONS

| AC |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| VOLTAGE | 6 | 19 | 25 | 31 | 84 | 90 | 96 | 115 | 121 | 140 | 146 |
| OUTPUT |  |  |  |  |  |  |  |  |  |  |  |
| TERMINALS | $5-6$ | $3-3$ | $3-4$ | $3-6$ | $1-6$ | $1-3$ | $1-5$ | $1-2$ | $1-6$ | $1-4$ | $1-6$ |
| INTERNAL |  |  |  |  |  |  |  |  |  |  |  |

available to keep the connections from touching the table. I used a piece of $3 / 8 \times 13 / 8-\mathrm{in}$. door stop and cut two $11^{3 / 4}-\mathrm{in}$. lengths. Fasten the strips with $3 / 8-\mathrm{in}$. wood screws through perforations in the masonite board.

Complete construction by identifying the terminals. You can write the proper numbers on the board with a grease pencil or lettering pen and India ink.

You'll find it convenient to have two leads about 10 in . long with banana plugs at each end for plugging up voltage combinations on the board conveniently and safely. Use flexible test lead wire and insulated banana plugs. If the plugs have a wire holding screw in the insulated handle, wrap a layer of tape around the banana plug handle as a precaution. Tack a piece of Masonite or cardboard about $6 \times 11$ in. across the bottom of the wooden supporting strips as an extra safety measure.
Using The Volt Board. The ac volt board adds and subtracts to provide the 11 different voltages. Thus, the 6 volts of L2 subtracted from the 25 volts of L1 produces 19 volts. Add these two transformer voltages and the result is 31 .
Table 1 shows all the available voltages, listing the terminals and internal connections which provide them.

To get an output of 31 volts, for example, use binding posts 3 and 6 as output terminals and plug a jumper lead between binding posts 4 and 5 . To obtain 84 volts, use terminals 1 and 6 , run one jumper from 2 to 4, and another from 3 to 5 . Simple, isn't it?

You may wish to fasten Table I on the board for quick reference. A celluloid or clear plastic cover plate will protect it against wear. Voltages given in the table are approximate. I rounded the numbers off since line voltages vary from time to time. These numbers are sufficiently accurate for most uses; but, if you desire greater accuracy, measure with an ac voltmeter.
Safety First. Exercise normal precautions when using the board. Since the line is in the circuit, you can get a severe shock if you ground yourself and touch one of the terminals. Therefore, do not touch a radiator, waterpipe, or other grounded metallic object
while you're working with the board. Do not stand on concrete while you're using the board unless you're wearing rubber-soled shoes.

If you must use the board in a concretefloored shop, always pull the plug. before touching a point in the circuit. A doublepole, single-throw switch would alleviate the need to remove the plug under the circumstances described; but, a switch is easy to overlook accidentally-even when a pilot light is provided.

Extras. You can equip your volt board with some frills if you wish. The schematic in Fig. 4C shows how to cut in a DPST switch and a neon glow lamp pilot light.

You can enclose your volt board in a snappy looking case-commercial or homemade. If you fit it into a metal case, be sure to use insulating shoulder washers to mount the binding posts.

An ac convenience outlet installed on the board will come in handy when you're supplying voltage for plug-equipped radio equipment or appliances. Connect leads about 10 in. long to the convenience outlet. Connect banana plugs to the other ends of the leads to permit easy connection to any binding post on the board. Fasten the convenience outlet on the volt board. You can stick banana plugs in perforation holes on the board to keep them out of the way when not in use.

Troubleshooting. Intermittent troubles in radios are difficult to find. Sometimes they are caused by variations in voltage or temperature. The ac volt board will provide high and low line voltages while you're trying to make the set quit. This is often quite a problem. High temperatures can be induced by jacking the line voltage up and covering the set with newspapers. You must use discretion, of course, or you may induce a new set of troubles. Operation at increased line voltage should not be attempted for a period of more than a few minutes at a time.

Sometimes you can cause marginal components in a radio to fail by increasing the line voltage. Occasionally this will "cure" defects, too. Thus you can sometimes catch bad components while you have a radio on the bench and prevent having trouble later.


Parts mount easily on a perforated board.


Under view of board.




B TOP VIEW OF TRANSFORMERS
(NUMBERS CORRESPOND TO BINDING POST CONNECTIONSI

4 SCHEMATIC


# Experimenter's Antenna Impedance Bridge 

By JOE A. ROLF, K5JOK

yOU'LL be able to take the guess-work out of antenna design and construction with the compact impedance bridge shown in Fig. 1. Designed especially for the experimenter, the unit will measure impedances from 0 to 1500 ohms at a construction cost of less than $\$ 12$. The only accessory equipment required is a grid-dip meter or signal generator.
The circuit (Fig. 2) is a resistance-capacitance variation of the well known Wheatstone Bridge. C1, C2, R1 and the impedance to be measured form the bridge arms; the remaining components comprise the metering circuit.

Wiring and Construction should pose no problem. The components are readily available; and, by using Figs. 2 and 3, you will be able to assemble the bridge in short order. It is important that C1 and C2 be quality $5 \%$ silver mica capacitors, and that R1 has a linear taper.

The unit is housed in a $3 \times 4 \times 5$-in. Minibox. A partition of light aluminum isolates R1 from C 1 and C2 to prevent possible interaction at high frequencies. Make all leads short and direct for the same reasons.

In operation, an RF signal from an external source is fed into the input, J1 and J2. C1 and C 2 are identical and therefore have equal impedances, so that when R1 is adjusted to equal


Aluminum baffle shields bridge arms C1 and C2 from the rest of the circuit to prevent interactian at high frequencies. Binding posts $\mathbf{J 2}$ and 14 are grounded to the cabinet, while J1 and J3 are insulated with extruded washers.


The campact impedance bridge simplifies antenna design and canstruction.
the impedance of the antenna connected across J 3 and J 4 , a zero potential exists between J3 and the junction of C1 and C2. The diode, CR1, rectifies any existing potential between these points and indicates bridge unbalance on the meter. R2 is the meter sensitivity control; RFC1 an isolating choke; and C2 a meter bypass capacitor.

To Test the Bridge, couple your grid-dip meter to the input terminals with a three- or four-turn link as shown in Fig. 4. If a signal generator is used, a direct connection should be made. Adjust the meter sensitivity control for maximum meter deflection with R1 set at mid-scale and connect a 50 - to 1000 -ohm resistor across the bridge output terminals. At some part of R1's rotation, the meter will take a pronounced dip. At this null, the bridge is

balanced and R1 equals the impedance of the resistance across the output terminals.

Bridge Calibration can be made in two ways. The easiest is to connect a volt-ohmmeter across terminals J1 and J3 and calibrate the resistance of R1 in convenient steps. This method is accessible to most experimenters, but the overall accuracy depends upon the accuracy of the VOM used.
The second method permits much better accuracy, but is not readily available to most builders. This involves measuring the impedance of a number of close tolerance composition resistors at about 3 mc . In either case, the bridge can be calibrated for direct readings; or, as with the author's unit, a 0-100 logging scale can be used with a separate calibration chart.

It should be noted that the impedance measured by the bridge is the impedance of the antenna at the frequency at which the grid-dip meter or signal generator is set. It is important, therefore, that the signal source operate at the antenna's resonant frequency.

Also, the bridge will react to harmonics generated by the signal source. This is generally apparent when more than one null is noted as R1 is rotated across its range. In most cases, this can be minimized by decoupling the signal source slightly.

|  | MATERIALS LIST-ANTENNA IMPEDANCE BRIDGE |
| :--- | :--- |
| Description |  |

The overall accuracy of the bridge depends upon the calibration. With care it should be accurate to $7 \%$, or less, at frequencies up to about 30 mc . Useful readings are possible up to about 100 mc . Accuracy can be improved by using a 500 ohm control in place of R 1 , but will reduce the maximum range of the bridge to about 700 ohms.
If desired, the bridge sensitivity can be improved by use of a $0-500$ microammeter in place of the $0-1$ milliammeter shown. The latter meter however, is more than ample for use with most signal sources. In fact, sensitivity is such that the bridge can be made to double as a simple field strength meter by shorting across the output terminals and attaching a tuned circuit across the input.


Youthful experimenter's dilemma over use of this unidentified radio frequency coil can be resolved quickly by simple formula.

TABLE ${ }^{1}$
ENAMELED MAGNET WIRE

| Gauge No. | Dia. (ln.) |
| :---: | :---: |
| 14 | .0659 |
| 16 | .0524 |
| 18 | .0418 |
| 20 | .0334 |
| 22 | .0266 |
| 24 | .0213 |
| 26 | .0169 |
| 28 | .0135 |
| 30 | .0108 |

By FORREST H. FRANTZ Sr.

RADIO experimenters who want to build custom electronic gadgets that operate in various frequency ranges frequently need to design their own coils. However, those who salvage unlabeled radio frequency coils from discarded or surplus equipment may find they have suitable stock on hand if they can determine inductance.

The problem reduces to this: For operation at a given frequency, what size coil form, wire and winding length are required, and how many turns should the coil have?

Design of an air core coil of given inductance is relatively easy. And if you know the frequency range to be covered and the tuning capacitor to be used, determining the required inductance is easier yet. The simple calculations that follow are not intended to cover the fine points of RF coil design. Resulting designs may not necessarily be optimum, but they will be adequate for experimental purposes. While they are oriented toward coil design, the procedure need only be reversed to determine characteristics of coils that already exist.

Determining Inductance. Suppose you want to design a coil for the broadcast band. Assume you're using a 365 mmfd . tuning capacitor and the lowest frequency that you want to tune to is 540 kc .
The inductance $L$ of the coil in microhenrys
is bound by using the formula $L=25400 /\left(f^{\circ} \mathrm{C}\right)$ where $C$ represents micro-microfarads and $f$, megacycles.
In this problem $C$ equals 365 and $f$ equals .54 . Then $\mathrm{L}=25400 /\left(.54^{2} \times 365\right)=25400 /(.291 \times$ 365 ) $=25400 / 106$, or 239 microhenrys.

Note that the low frequency end of the band was used in this computation. To determine the high frequency end of the band that you can expect the 239 -microhenry coil to cover, assume the minimum capacitance of the tuning capacitor and stray circuit capacitance to be 30 mmfd . The applicable formula is $\mathrm{f}=$ $159 / \sqrt{\text { LC. . In this case, } \mathrm{f}=159 / \sqrt{239 \times 30}=}$ 1880 kc . Thus, this combination readily covers the broadcast band and the low frequency limit can be extended to assure adequate coverage.

The assumption that maximum circuit capacitance equals maximum capacity of the tuning capacitor is not entirely correct since stray and circuit capacitance is in parallel with the capacitor. But neglecting stray and circuit capacitance for the low-frequency limit merely extends the limit to a lower frequency. This extension is trivial for a $365-\mathrm{mmfd}$. capacitor.

A Simplified Formula for RF coil design, accurate to about 1 or $2 \%$, is

$$
\mathrm{n}=(\mathrm{l} / \mathrm{r}) \sqrt{\mathrm{L}(9 r+10 l)}
$$

where $L$ is inductance in microhenrys, $n$ is the number of turns on the coil, $r$ is the radius of the coil in inches, and $l$ is the length of the winding in inches (Fig. 2). If a $1-\mathrm{in}$. dia. ( $\mathrm{r}=$ $1 / 2 \mathrm{in}$.) is used, the formula simplifies further to

$$
\mathrm{n}=2 \sqrt{\mathrm{~L}(4.5+10 l)}
$$

Now, let's round off the required inductance for the broadcast band (with the 365 mmfd . capacitor) to 240 microhenrys and assume a $1-\mathrm{in}$.-dia. coil form. We must also assume a winding length so try $11 / 2$ in. Number of turns then required are

$$
\mathrm{n}=2 \sqrt{240(4.5+10 \times 1.5)}
$$

Thus,

$$
n=2 \sqrt{240 \times 19.5}, \text { or } n=2 \sqrt{4680}
$$

which is 137 turns.
The wire size used in winding the coil is optional as long as the diameter is sufficiently small to allow 137 turns to fit in 1.5 in . of coil form length. Winding is easiest, of course, if the turns fit one against the other across this coil length. Diameter of the wire which will meet this requirement is $l / n$ or $1.5 / 137$, which is .0109 in . In Table I, which shows the diameter of various gauges of enameled magnet wire, note that \#30 has a $.0108-\mathrm{in}$. dia. and is closest to the diameter computed. Therefore, the coil can be close-wound with 137 turns of \#30 enameled wire.

Counting of turns can be bypassed for all practical purposes when wire size is determined for close winding. You need only mark the winding length off on the form and wind till this length is filled.

Another Coil Design Example: Assume C is 100 mmfd max, and 5 mmfd min., circuit capacitance is 10 mmfd and range of frequencies to be covered about 1.8 to 6 mc . An available coil form has a $3 / 4-\mathrm{in}$. dia. Design the coil.
At this point, I'd like to introduce the method for determining one frequency extreme if the other is known. If minimum and maximum capacities cannot be set, you can't arbitrarily assume that a given tuning capacitor will cover a given range.

In this problem the maximum capacity is 110 mmfd and the minimum is 15 mmfd , if you take circuit and stray capacitance into account. The ratio of high to low frequency is the square root of C maximum divided by the square root of C minimum, or $\sqrt{110} / \sqrt{15}$, or about 2.7. Clearly the frequency range cited in the problem cannot be covered since the ratio is $6 / 1.8$ or about 3.3 .
There is a choice of using a tuning capacitor with a higher maximum capacity or of settling for a narrower range. We'll settle for a narrower range and use a low frequency limit of 2 mc . The high frequency limit then becomes 5.4 mc . Then

$$
\mathrm{L}=25400 /\left(2^{2} \times 110\right)
$$

which reduces to 57.8 microhenrys. If you
solve for the high frequency end of the range using 5.4 mc and 15 mmfd you'll get the same result.
Now, computing the number of turns required for the coil, let's assume the winding length to be 1 in . Then

$$
n=(l / r) \sqrt{L(9 r+10 l)}
$$

Since $r$ is $3 / 8$ and $l / r$ is $8 / 3$ this becomes

$$
n=(8 / 3) \sqrt{57.8(9 \times 3 / 8+10)}
$$

The result is 74 turns rounded off to the nearest turn.
The wire diameter that will permit close winding is $1 / 74$ or .0135 inches. Table $I$ indicates that \#28 enameled wire will fill the bill.

Limitations and Considerations. The formulae presented apply to single-layer air core coils at radio frequency. At radio frequencies above 30 mc , capacitance becomes very critical and inductance very small. The difficulty of getting accurate capacitance estimates above 30 mc increases. Skin effect-the tendency for RF currents to flow along the outside of a conductor-becomes more pronounced, too. Thus, calculated results tend to become less accurate portraits of practical circuits.
Litz wire, frequently used for coils at broadcast and lower frequencies, contains several conductors insulated from each other. It provides more "skin" surface to carry RF currents. Consequently, coils wound with Litz wire have higher " $Q$ " than coils wound with solid wire. Insertion of a ferrite core increases inductance of a coil.
Coils with these variations require changes from the techniques described above.
Inductance of coils wound on ferrite cores is difficult to estimate. Positioning of the winding on the ferrite core, core dimensions, shape, and composition all contribute. The only recourse is to resort to a measurement. A Q meter or a grid-dip meter will do this accurately. The instruction manual of either instrument will outline the procedure.

You could also use an RF signal generator and a VTVM with an RF probe. Connect a 20 K carbon potentiometer in series with the coil, then connect this combination to the RF signal generator as in Fig. 3. Set the frequency to 1 mc .

Now adjust the potentiometer till you measure equal voltages across the coil and the potentiometer. Disconnect the potentiometer. Then switch the VTVM to the ohmmeter function and measure the potentiometer resistance across the terminals which were connected in the previous circuit. Coil inductance is approximately .159 times the measured resistance.

The signal generator setting of 1 mc was chosen on the assumption that the coil was a broadcast or an IF coil. If it is obviously a higher frequency coil, set the signal generator to 10 mc for the measurement. The resistance multiplier factor then is .0159 .


## A Handy Oscillator

# Ham Band Marker <br> for Alignments and Calibrations 

By EDWARD SUMMER

|S YOUR receiver accurate near band edges and other important frequencies? How much does it drift? These are just a few of the many questions answered by the ham band marker in Fig. 1. Easy to build and compact in size, it costs less than $\$ 10$. The marker has no known commercial counterpart.

The Heart of the Marker is a printed circuit module sold by International Crystal Mfg. Co. As a 1 -transistor crystal oscillator, the module performs with high stability. It costs only \$4-approximately the same as its component parts. Crystals do not come with the module, but have to be ordered separately
If you purchase a $3.5-\mathrm{mc}$ crystal for the marker, you will get strong, usable harmonics up to the 6 -meter ham band ( $50-54 \mathrm{mc}$ ). By touching the marker to a TV antenna, you
can observe cross hatching on the TV screen, which will occur up to channel 13 . This cross hatching is evidence of output in the UHF region. The high harmonic output can be traced to the design of the printed circuit oscillator. The output is developed across a resistor, which is not frequency sensitive.

Begin Construction by drilling four holes in a $4 \times 21 / 8 \times 15 / 8$-in. Bud Minibox (M1) to accommodate the four $6-32$ mounting screws furnished with the printed circuit (Fig. 3). Use four 6-32 nuts as stand-off spacers between the printed circuit and minibox to prevent the oscillator from shorting out to the case. Next, drill the holes to accommodate the pushbutton switch S1, coaxial. jack J1, and battery holder BH1.
Mount parts as in Fig. 2 and wire them as in Fig. 4. If desired, you can wire a slide


2

## MATERIALS LIST-HAM BAND MARKER

## No. Req.

1 battery (Burgess type 110,15 volts)
Jl standard coaxial jack (Amphenol type 83-1R)
S.1 pushbutton or slide switch (see text)

M1 natural aluminum Minibox (Bud type CU-3002A)
8H1 battery holder (Keystone type 166)
Misc. hardware, grounding lut
Above parts can be obtained from Allied Radio Corp., 100 N. Western Ave., Chicago 80, III.
1 PCM1 printed circuit module/oscillator (International Crys tal type TRO-2)
$1 \quad 3500 \cdot \mathrm{kc}$ crystal (International Crystal type FA.5)
Last two parts can be obtained from International Crystal Manufacturing Co., 18 N. Lee, Oklahoma City, Okla.
switch in parallel with the pushbutton switch S1 for continuous operation. Make all connections to the printed circuit board with the clips included with the board. The coaxial jack facilitates the use of both banana plugs and microphone connectors. Place a 15 -volt battery B1, in the holder, and you are ready for operation.

Many Uses Are Claimed, the most obvious being the alignment and calibration of receivers, signal generators, wavemeters, and grid dip oscillators. People who own general coverage calibrated bandspread receivers will find almost constant use for the ham band marker. When changing from band to band, the usual procedure is to set the main tuning to a "set" or calibration point.

The bandspread dial is supposed to be accurate. In most cases, however, it may be off as much as 100 kc . Use of the marker puts a stop to such inaccuracy.

Set the bandspread dial to a harmonic of $3.5 \mathrm{mc}(3.5,7.0,14.0,21.0,28.0$, or 52.5 mc ). Then, with the marker on, tune the main tuning dial until the signal is heard. Your receiver is now "on the nose," accuracy being within a kilocycle or so.

Accuracy and Stability. Accuracy is best at the lowest frequency. At 3.5 mc , the marker is accurate to within 350 cycles; at 7.0 mc , it is $\pm 700$ cycles; and, at the 10 -meter band, it is accurate to within 2800 cycles. This excellent stability is due in part to the battery supply and use of a plated crystal at a low drive level.

Because of its high stability, the marker can be used to measure frequency drift in VFOs and receiver's. The procedure is simple: Adjust the receiver for CW reception, and tune in to the marker frequency (3.5, 7.0, . . .). After about a half an hour, tune back to the marker frequency and note how much you moved the dial. This indicates the amount of drift of your receiver.

In almost the same manner, VFO drift can be measured. With the VFO turned on (leave the rest of the transmitter off), "zero-beat" the marker. After waiting awhile, tune the VFO back to zero-beat with the marker, and note how much the dial is moved.


Note: When checking VFO drift, turn the beat frequency oscillator (BFO) off. Its use is not necessary.

The above methods are ideally suited for checking warm-up drift. In most cases the marker can also be used for VFO calibration. If exceptionally accurate calibration is desired, a $100-\mathrm{kc}$ secondary frequency standard should be used in conjunction with WWV or WWVH.
You will doubtlessly find many new applications for your ham band marker; and it will probably be in as constant use as mine is in my ham shack.

## Aluminum Windows Serve as Antennas

- An aluminum combination window makes a good antenna for boosting the range of broadcast receivers, table-top radios, and short-wave receivers, since the metal covers a fairly large area. Just clip a length of wire to the aluminum frame and connect the other end to the antenna terminal on the radio, using alligator clips. If you prefer a permanent connection, fasten the end of the wire lead under one of the screwheads on the window frame. If your radio is an ac-dc table model, or any other type which works off the power lines but uses no power transformer or isolation transformer, connect a .01 mfd 600 -volt fixed capacitor between the antenna terminal and the aluminum window frame to isolate the frame from the radio and prevent shocks.-Arthur Trauffer.


# Hondy Goar for Hams She 3.-. M Antemna Box 

By JOE A. ROLF, K5JOK

This convenient unit selects antennots, measures efficiency, and switches the antenna from receiver to transmitter.

Coax jacks 1, 2, and 3 accommodate three different antennas. The two jacks on the right connect with coax cables from receiver and transmitter antenna terminals.


TIRED of fishing through a jungle of coax everytime you want to hook a different antenna to your transmitter? Do you ever wonder just how efficient your antenna system is? Do you still use an old fashioned knife-switch for antenna change-over? If so, this antenna box will solve your problem.

It permits instant selection of any one of three different antennas by means of a convenient coaxial jack system. The antennas are plugged into three coax jacks on the rear of the box (Fig. 2). You can patch the particular one you want into the circuit simply by plugging the phone on the front panel into the corresponding jack as in Fig. 1.

In addition to antenna selection, the unit has a change-over relay controlled by the transmitter which switches the antenna from receiver to transmitter. Also, an SWR (standing wave ratio) bridge measures antenna efficiency.

Layout and Construction are fairly simple (Fig. 3), so they should pose no serious problems, even for the novice. The unit is housed in a $31 / 2 \times 6 \times 8-\mathrm{in}$. Minibox. If you wish to
modify the layout to accommodate differentsized components than those used by the author, there is ample room, but keep the leads short and direct to minimize losses.
All leads in the antenna line are RG 59/U coax cable, since the circuit is designed to be used with coax-fed antennas having 72 -ohm impedances. For 52 -ohm coax-fed antennas, substitute RG $58 / \mathrm{U}$ cable and use a 36 -ohm resistor at R1, instead of the 47 -ohm resistor specified in the Materials List. Actually, no difficulty will be encountered in connecting a 52 -ohm antenna to the 72 -ohm circuit other than error in the SWR reading.

The bridge pickup, L1 (coiled coax in Fig. 3 ), is a 28 -in. piece of RG $59 / \mathrm{U}$ with a length of insulated hookup wire inserted between the shield and center conductor. Strip the outside rubber covering from the coax and bunch the copper shield together from the ends so that the insulated center conductor slips out.

With the center conductor removed, insert a $26-\mathrm{in}$. piece of small-diameter hookup wire into a hole punched about $1 / 2 \mathrm{in}$. from one end. Feed the hookup wire through the shield and


Cabinet is small, yet adequate for easy installation of components. Note short, direct fwo-conductor wire leads between phone jacks on front panel (top leff) and coaxial ja:ks on back panel.

out a similar hole punched in the other end of the shield. Insert the insulated center conductor and spread the shield tight again. Wrap the shield ends with bare wire and solder to hold it in place. At midpoint from where the hookup wire enters and leaves the coax, spread the shield and pull a couple of inches of hookup wire out for connection of R1.

Now wind L1 into a 2-in. coil, solder together at several points, and solder it to chassis-fastened lugs at the bottom of the cabinet between the relay and SWR bridge switch (Fig. 3). Secure the coil to the chassis to prevent possible shorting with other components.

Since most amateur transmitters are designed to activate an external antenna relay, connect the leads of the relay coil to the appropriate terminals of the transmitter with a short length of 2 -conductor cable. Consult your transmitter manual for these connections. If your transmitter is not designed to activate an external relay, you can mount an

MATERIALS LIST-3-N-1 ANTENNA BOX

Deslo.
C1, C2. C3, C4
CR1. CR2
J1, J2. J3, J4. J5
JP1, JP2, JP3
Ll
M
PL
R1
R2
Relay
Sl
chassis
Mise.

Description
.001 mfd ., 100 -volt ceramic disk rapacitors 1N34 diodes, or equivalent chassis-type coaxial jacks standard phone jacks $28^{\prime \prime}$ of RG 59/U coaxial cable (see text) 0.1 milliampere de meter standard phone plug 47-ohm, $1 / 2$-watt resistor 25 K . $1 / 4$-watt volume control, Cl taper DPDT relay, 110 volt ac coil SPDT tougle switch Minibox, (Bud CU-2109) $36^{m}$ of small-dia. hookup wire, line cord and plug, 2 -conductor cable
additional switch in the antenna box for this purpose.

Check for Antenna Efficiency. With the antenna box connected to receiver, transmitter, and antenna, as in Fig 4, throw the SWR bridge switch (S1) to "Forward" and tune the transmitter as usual. As the transmitter is loaded, the antenna box meter will indicate output. The meter reading will be proportional to the frequency; that is, it will take about 75 watts to give a full meter deflection on 80 meters, and much less for full deflection on 10 meters. Bridge sensitivity is controlled by R 2 .

In the "Forward" position, the meter indicates power being fed into the antenna, and can be used as a simple output indicator to aid in tuning.

In the "Reverse" position, the SWR bridge measures the reflected power, or standing waves, present in the antenna feedline. Reflected power, stated simply, is power which is not fed into the antenna and radiated as signal. The greater the reflected power, or SWR, the more inefficient the antenna.

To find the actual standing wave ratio of an antenna, note the "Forward" and "Reverse" meter readings and use the following formula:
SWR $=\frac{\text { Forward Current }+ \text { Reverse Current }}{\text { Forward Current }- \text { Reverse Current }}$ Ideally, the resulting ratio derived should be 1:1; however, this is not possible even with the best antennas.
Any efficient antenna system will closely approach an SWR of $1: 1$. An antenna with a high SWR indicates that the feedline is not matched properly to the antenna, or the antenna is not resonant to the operating fre ${ }_{7}$ quency. This can be remedied with the aid of the SWR bridge.
The bridge is more sensitive on the higher amateur bands. Also, it will give larger readings with higher power, though it will operate satisfactorily with transmitters having power inputs as low as 30 to 50 watts. The unit should not be used with transmitters having an input of over 300 watts.

## Black Light for Fluorescent Experiments

ULTRA violet, black light is used "to see the invisible" in a Magic Glo kit offered by Edmund Scientific Co.

A fascinating device for those interested in the science of fluorescence, the kit produces only long-wave black light-completely harmless to the eyes-but causes fluorescence in more than 3000 substances. It is suitable for many experiments, for studying fluorescent rock collections, and for fun-filled science stunts.

The set includes a Magic Glo lamp, stand, invisible water paints, ink, fluorescent crayon, trace powder, pen, brushes, and fluorescent rock specimens. Instructions tell how to perform over 40 experiments and explains the facts about black light.

Priced at $\$ 10.95$ postpaid, the Magic Glo kit is available from Edmund Scientific Co., Dept. RTE, Barrington, N. J.

"Hold it! I forgot to load the sappllite's recorder."


T'S a sure thing. The listener who is able to log and verify unlicensed or "pirate" stations can consider himself a top rank DXer. In fact, just to hear one of these elusive fish is an accomplishment. What does it take?-know-how, patience, and luck. The first we'll give you here: the other two you'll have to acquire on your own.

Pirate transmitters fall into three categories. First, there are those operated simply for the fun of it. This type is the oldest, dating back to the "roaring '20s"-the pioneer days of radio. According to legend, one unlicensed station in the Ohio valley has been on the air for over 30 years. If the story is true, this crafty veteran is an exception. Most such outlets stay on the air only a few months: either the FCC catches them, or the operators lose their interest, or their nerve. Transmitting without a license is, of course, a federal offense.

How Do You Hear Them? Constantly check clear broadcast band channels, especially during daylight hours. As very low power is used (seldom more than 10 watts), no interference can be bucked. In the Northeast 1200 kc is a popular spot; in the Pacific Northwest, it might be 670 kc . Another stunt is to move just above the BCB, 1610 through 1620 kc , easily tuned on most AM receivers. Also watch for harmonics, which are never suppressed, often almost as strong as the fundamental frequency.

Not every "joy broadcaster" follows such rules. WCBJ in Gilberts, Ill. (Fig. 1), for ex-
ample, estimated its power at 50 watts and transmitted on 1555 kc . It was heard at least 300 miles away. Fortunately, there are other ways to spot unlicensed broadcasters. Announcing sounds unprofessional, and commercials are rare, although sometimes they are made up or borrowed-one young man went so far as to tape record a USAF recruiting program. The final test is modulation, frequently distorted; some such stations are best heard when tuned slightly to one side of the carrier frequency.

Now, will they verify? Very often, if you can come up with the correct address and include a prepared QSL card which merely has to be signed and mailed back to you, they will (despite a possible $\$ 5000$ fine, if caught). That address is the hard part. It requires careful listening for names, streets, or any other possible clue. In connection with such detective work, a telephone directory and street map of the city or town involved will be most helpful.

Not a Game. Here in the U. S., joy broadcasters are the only outlaw type found, but in many other parts of the world secret radio stations are a deadly serious proposition. This second category is represented by rebel voicés operating from the back of a truck, aboard ship, or secretly from a neighboring country. On such a "wanted" list we would find the Redbacked Radio España Independente, a station
table a-unlicensed short wave transmitters

| KC/s | STATION | NOTES |
| :---: | :---: | :---: |
| 6000 | Radio Swan | Unlicensed but not clandestine, jammed |
| 6340 | FLN Algerian Renaissance Radio | Interfere with each other deliberately |
| 6430 | FLN <br> Algerian Renaissance Radio |  |
| 6960 | Radio España Independente | Jammed |
| 11260 | Radio España Independente | Jammed |
| 11835 | Algerian Renaissance Radio | After government Radio Alger signs off |
| 12160 | Radio España Independente | Jammed |

All frequencies, except that of Radio Swan, are subject to variation, and other channels may also be used.


The author's prepared QSL from outlaw WCBJ. This card was signed and mailed a fow hours before the FCC closed the station.
of the FLN (Arab nationalist movement in Algeria), and Algerian Renaissance Radio (extreme right wing enemy of the FLN), plus many less permanent SW fixtures. These are all categorized as "clandestine," thus excluding such stations as Radio Swan, which has no license but is completely out in the open.
While clandestine transmitters seldom have power comparable to Radio Moscow or the Voice of America, they do have enough watts to carry them around the world when conditions are right. Rebel stations usually choose frequencies outside those bands allocated for SW broadcasting (some licensed stations do the same), which greatly reduces interference and makes them easier for the DXer to spot. Typical programming consists of long-winded emotional speeches interspersed occasionally with band music. As with our first group of pirates, modulation is often not perfect, but here distortion takes the form of a hum. Occasionally such a station may be jammed.
It is virtually impossible to verify reception of clandestine short wave broadcasts.

For Profit. Outlaws in our third category present exactly the opposite situation: they are difficult to hear, but QSL readily. These commercial stations operate on shipboard in international waters off Western Europe for the purpose of breaking state radio monopolies enjoyed by every European government except those of Greece, West Germany, Portugal, and Spain. Broadcasting from on board ship is prohibited by the International Telecommunications Union, and it is this fact which distinguishes these outlets from similar but more powerful stations transmitting from tiny Andorra, Luxembourg, and Monaco for precisely the same purpose.
This device is certainly not new. The world's first radio pirate ship was RXKR, operating off the California coast in 1933 under Panamanian registry. However, its purpose was not quite so worthy. RXKR operated as a floating casino, and broadcasts were designed to sell gambling.
Although the modern commercial pirates serve legitimate interests, many groups oppose them, and while such broadcasters will probably increase in number, there are at present only three of them. Radio Veronica (sometimes using the call VRON) transmits on 1563 kc off the Netherlands coast. Radio Nord-not far from Stockholm, Swedenuses 602 kc 24 hours a day.

While reception of these two is difficult, it is certainly not impossible. With a dropping sunspot count and better medium wave reception, BCB DXers using communications receivers (especially listeners in the East and Midwest) stand a good chance of bagging them. The third station, Radio Mercur, operates on FM ( 88 mc ), and is therefore an almost impossible catch.
Reports for Radio Veronica go to P.O. Box 244, Hilversum, Netherlands, and those for Radio Nord to Report Control, Radio Nord, Stockholm 3, Sweden.

## Aluminum Windows Serve as Antennas

- An aluminum combination window makes a good antenna for boosting the range of broadcast receivers, table-top radios and short wave receivers, since the metal covers a fairly large area. Just clip a length of wire to the aluminum frame and connect the other end to the antenna terminal on the radio, using alligator clips. If you prefer a permanent connection, fasten the end of the wire lead under one of the screwheads on the window frame. If your radio is an ac-dc table model, or any other type which works off the power lines but uses no power transformer or isolation transformer, connect a .01 mfd 600 -volt fixed capacitor between the antenna terminal and the aluminum window frame to isolate the frame from the radio and prevent shocks.-Arthur Trauffer.


## Tube Shells House Tiny Circuits

 - Discarded metal vacuum tube shells make neat shielded housings for plugin relays, transistors, and diode circuits. Pry the base from the tube and discard the innards. Solder in your transistor circuit making connections to the base pins, and you have a plug-in device that fits tube sockets. If components such as resistors radiate heat, then drill enough vent holes to provide an adequate air circulation.-JонN A. Сомstock.


# HIGH-EFFCLEENCY Two-Channel Mixer 

By W. F. GEPHART

AMIXER to superimpose voice on recorded music, operate one amplifier from two microphones, etc., should have the following characteristics:

1) The input impedance should match the impedances of the devices feeding it and the output should be suitable for high-gain amplifier inputs.
2) The input and output impedance should not vary as the mixer's controls are varied.
3) The variation in gain for each channel should be smooth from zero to maximum.
4) There should be no interaction between controls.
5) The mixer should not affect frequency response of the input signals and should not introduce any hum or noise into the signal being fed into the amplifier.
6) The mixer should be versatile enough to permit either fading or direct switching or a combination of both.
Many mixers do not have all of these characteristics and when used with high-fidelity equipment the results are disappointing. Those that do work well usually have expensive, balanced, padtype controls-too expensive for most non-professionals. The mixer described in this article, however, can be assembled of inexpensive parts, possesses all of the characteristics mentioned as necessary, and is well-suited for high-fidelity use.

Figure 2, a schematic diagram of the mixer's circuit, shows that the input circuits are designed for high-impedance inputs such as crystal micro-

Front-panel view of two. channel mixer well-sulted for use with high-fidelity equip. ment-and inexpensive!
phones, phono pick-ups, tuners, etc. The two inputs are fed into separate jacks (J1 and J2), through separate "Level" controls (R1 and R2) and into separate amplifiers (V1A and V1B).
Amplified, the signals are then fed through separate sides of the Transfer Switch (SW1), through separate sides of the Function Switch (SW2), and into separate sides of the Fader Control (R7). The signals, still separated, each go to a grid of a dual cath-ode-follower stage (V2), whose plates and cathodes are common. Here, mixing occurs. The output is fairly low impedance, permitting up to 100 ft . of microphone cable between the mixer and main amplifier.
The function of the Level controls ( R 1 and R ) is to equalize the levels of the two incoming signals, so that no gain adjustment will be required when switching from one signal to another.

The Transfer Switch (SW1) is used to switch directly from one signal to another without fading. When in the center position, both signals are passed. Moving the switch to either side permits only the signal selected to go through, grounds out the other.

The Function Switch (SW2) determines whether the signals are to be switched directly by the Transfer Switch or faded into each other by the Fader Control (R7). When in the "Direct" position (as in Fig. 2), the signals go directly to the grids of V2, bypassing the Fader Control.

The Fader Control (R7) is a dual potentiometer, wired so that the gain of one signal is increased as the other is decreased. It must be a linear taper potentiometer connected so that as the shaft turns, resistance increases in one element as it decreases in the other. As shown in Fig. 2 (ignoring the small dotted lines), a standard dual potentiometer may be used and, at midpoint, an equal amount of each signal will pass. The fading action is therefore (turning clockwise) from full signal A to half signal A plus half signal B to full signal B. If it is desired to have no signal at midpoint (with fading action from full signal A to zero to full signal B), the potentiometer must be modified. This modification will be explained later.

Figure 2 assumes that external power for the mixer can be secured from the main amplifier. Power requirements are 6.3 volts ac at .7 amps and between 150 and 250 v . dc at 5 ma. This power may be brought in by a four-conductor cord wired directly into the mixer or through a power plug.
If power from
 the main amplifier is not available, a built-in power supply, such as that shown in Fig. 6, can be included. Note that the power line is isolated from the chassis and ground by the two filament transformers. This is necessary not only from a standpoint of safety, but also to prevent interaction between the mixer and main amplifier.
To minimize ac hum, a filament balancing control (R11 in Figs. 2 and 6) is provided. If power is secured from a main amplifier with either side of its filament circuit grounded to the chassis, however, this control should not be included. This control should be set after the mixer is connected to the main amplifier and the inputs are plugged in. With no signal (this may require holding your hand over microphone), both Level controls at full gain, and the main amplifier gain turned up until a hum is heard, adjust the Hum

Control for minimum hum in the speaker.
Figure 4 gives the panel and chassis layout for the unit without the power supply. No dimensions are indicated for the mounting of the two Input jacks and Hum Control in one end of the case and the Output jack and power plug at the other end; these can be placed where most convenient. If a power supply is to be built in, a larger box ( $31 / 2 \times 6 \times 10 \mathrm{in}$.) should be used. The same size chassis piece can be used, but it should be mounted to one side, leaving clearance at one end of the box for the two transformers and selenium rectifier. The pilot light and power switch could be placed symmetrically on either side of the Fader Control, on the panel under the Level controls. The Hum Control and both Input and Output jacks would then be on the other end of the case.


Back of panel view of mixer with cover removed. Note Input jacks and Hum Control on end panel at right.

Figure 3, a back view of the mixer, and Figs. 7 and 8 show wiring arrangements. Notice that SW1 (shown in Fig. 8), is mounted with $3 / 8-\mathrm{in}$. spacers. This particular switch (Mallory 6243) has a very long arm which tends to protrude too far from the mixer's front panel unless mounted in this manner. Also notice that shielded sockets and tube shields are used to reduce hum and interference.
Run the filament leads first, twisting the wires together and keeping them close to the chassis (chassis is made of scrap aluminum, with a $1 / 2-$ in . bend along one side; a convenient source is the side panel of an old 3 -in. deep chassis). Be sure to use shielded wire where shown in the schematic and elsewhere if long (over 2 in .) signal leads are used. Generally, it will be best to use plastic-covered shielded wire to prevent the grounded shielding from shorting out against other wiring. Within reason, the larger the diameter of the shielding, the better, since small-diameter shielding has a higher


To modify the potentiometer (use a 2 -meg. pot.), cut a strip of shim brass (as thin as is available) the width of the potentiometer carbon strip. Using an accurate ohmmeter, adjust pot's arm to the exact midpoint, and mark it carefully. Cut the brass strip to a length slightly in excess of the circumferential distance from the midpoint of the carbon strip to the end terminal, and cement it (using contact cement) to the inner side of the strip (as shown in Fig. 5). Solder one end to the lug rivet at the end of the strip. Do the same to the other half of the dual potentiometer, using the opposite segment of the carbon strip. While every effort should be made to have the unsoldered end of the brass strips at the same point when the potentiometer is re-assembled, a little variation won't hurt since the midpoint is the point of lowest gain.

Tousethe mixer, connect the input and output cables and balance the hum. Then set both Level controls to midpoint and adjust the main amplifier gain to a satisfactory level for the weaker of the two input signals. The Function Switch should be on "Direct" and the two inputs can be switched with the Transfer Switch to determine which is the weaker signal. After the main amplifier gain has been adjusted, adjust the Level Control for the weaker signal to bring it up to the level of the other signal, switching with the Transfer Switch for comparison. Inputs to the mixer are now balanced.
If direct switching is desired, leave the Function Switch on "Direct" and use the Transfer Switch to select either or both inputs as desired.

If fading from one signal to another is desired, leave the Transfer Switch in the center position and switch the Function Switch to "Fade." With the Fader Control at midpoint, both signals (at half volume) will be heard, and turning the control either way will diminish one signal and and increase the other.

If, after a period of direct switching, it is desired to fade out the last signal instead of making a direct cut-off, first turn the Fader Control to maximum gain for the signal being heard. Leave the Transfer Switch in the proper signal
(TUBES AND SHIELDS REMOVED FOR CLARITY)

(the one being heard) position, and switch the Function Switch to "Fade." The second signal will still be grounded by the Transfer Switch and the first signal will still be connected directly to the grid of V2-but through the Fader Control at zero resistance. When desired, turn the Fader

## MATERIALS LIST-TWO-CHANNEL MIXER

R1. R2- .5 meig. potentiometers*
R3. R4- 1500 ohm, $1 / 2$ watt
R5, R6- .1 meg. $1 / 2$ watt
R7-Dual 1 meg. potentiometers* (See text)
R8- 47000 ohm, $1 / 2$ watt
R9- $15000 \mathrm{hhm}, 1$ watt, wire ewound
R10- 10000 ohin, 1 watt, wire-wound
R11-200 ohm, 2 watt potentiometer (Mallory C200P or M200PK)
C1. C2-10 mifd, 25 volt
C3, C4- $05 \mathrm{mfd}, 300$ volt
C5- $.2 \mathrm{mfd}, 300$ volt
C6, C7- 20 mfd, 250 volt
electrolytic 250 volt electrolytic

Mallory FP-320, Sprague TVL 3540
SWI-DP 3
SW2-DPDT toggle switch
J1, J2, J3-Phono Jacks
J1, J2, J3-Phono Jacks \#
V1-12AX7
V2-12AU7

Case-Bud Minibox $3 \times 5 \times 7^{\prime \prime}$
Tube sockets and shields, knobs, shielded wire, ete.
Additional and Substitute Parts Required if Power Supply is To Be Included. (See Fig. 6)
T1-Filament Transformer: Secondary 6.3 volts @ 1 amp
T2-Fllament Transformer: Secondary 6.3 volts @ .5 amp
SR1-20 ma. selenium rectifier
R12-5000.ohm, 1-watt, wire-wound
C9-40 $\mathrm{mfd}, 150$-volt, electrolytic
SW3-SPST togule switch
PL-6.3-volt pilot light and Jeweled socket
If power supply is used, larger, low-voltage quadruple condenser unit can be used to act as C6, C7, C8 \& C9; such as Mallory FP 312 ( $100 \cdot 80 \cdot 60 \cdot 40 \mathrm{mfd}$ @ 150 volts).

* All potentiometers must be linear taper
\# Jacks may be varied to suit needs; however, adapters made by Switchcraft can be used to adapt various microphone plugs to phono jacks.

Control toward the center position, fading out the signal. The other signal will not fade in since it is grounded out at the Transfer Switch. The
same operation could be performed with the Level controls but this would unbalance the input levels.

## Germanium Crystal Diode Connector for Experimenters

- With the increasing popularity of germanium crystal diodes, radio experimenters and crystal set builders are continually changing these crystals around from one circuit to another. The wire leads become shorter and shorter from continual nicking, bending, or soldering, and sometimes the leads break off at the body of the crystal.

To avoid these troubles, make a connector consisting of a pair of twin Fahnestock clips mounted on a strip of Bakelite (see photo). Insert the crystal diode in one side of the clips and make connections to the diode on the other side of the clips as shown. This device also allows two crystals to be connected in parallel, as is sometimes done to increase the current-carrying capacity of germanium diodes. If you do not have a pair of twin clips, simply fasten four clips to a Bakelite or wood base. To insert a crystal into the clips, simply press both clips at once and slip the leads into the clips one at a time. This method makes it unnecessary to bend the leads at all.


## Fuse Holder Eases Testing

- Ever wish there were some way you could hang on to both of your test prods with one hand while the other works the meter knob? Take one of those fuse holders used when you replace a pigtail fuse with an ordinary fuse and snap the barrels of your test prods into it. You can often touch the red prod to a hot terminal and the other to a chassis ground point nearby If the two test points are located farther apart, take the barrel of each prod out of the clips at the lower end of the holder and this will put the prod tips farther apart. You can even use the fuse holder to keep pairs of test leads from becoming separated when many are stored together.


## Insulated-Wire Tester

- Convert your Christmas tree lamp tester for insulated-wire testing. Solder an insulated wire lead directly to toothed electrode so temporary connections can be made to insulated wires in radio and electrical test work. Sharp teeth on the tester cut through the insulation and contact

the wire without damaging the insulation. Connect 2 of these testers to an ac voltmeter for electrical work, or, to a volt-ohm-milliammeter for radio service work and experimental work. Testers have fiber handles which make them safe for use on high voltages.-Arthur Trauffer.


Oscillator permits FM reproduction through FM or TV receiver with any record changer.

# A Compact FM Phono Oscillator 

BY JOE A. ROLF, K5JOK

STANDARD phono oscillators have been used for years to reproduce records through AM and FM radio systems. As for quality reproduction, they have left much to be desired; but the versatile, transistorized unit in Fig. 1, which can be built for $\$ 10$ or less, will satisfy even the most discriminating listener.

This phono oscillator presents many other uses. With a crystal or ceramic microphone it can be handled as a remote wireless mike, provided one of the resistors (R6) is omitted to improve modulation. It can also serve as a "baby sitter." In any case, you will find it capable of surprising reliability and fidelity.

The unit overcomes the frequency response shortcomings of the typical AM oscillator. It is designed for use with FM systems and TV receivers which are capable of greater fidelity than AM systems. This is true even with the majority of low cost FM table models.

The usual disadvantage of FM-type oscillators is one of modulation. Past units have required either a makeshift cartridge modulator or a complicated reactance type, which meant modification of the record changer, erratic performance, and added construction costs. This is avoided by the use of a unique diode modulator which is easily adjusted.

The Oscillator Circuit, shown in Fig. 3 is a common-base configuration using an RCA 2N384 transistor powered by the 9 -volt battery, B1. The circuit is conventional with the exception of the diode modulator which consists of components CR-1, R4, R5, and B2. The diode, CR-1, is a 500 -milliamp replacementtype silicon rectifier. One of its characteristics is that its shunt capacity varies with re-


Inferior view showing ports loyaut.
verse bias voltage. By varying this reverse bias, the shunt capacity can be changed as much as 20 mmfd and the rectifier can be used as a small electrically controlled variable capacitor. The function of battery B2 is to furnish the required bias of 1.5 volts. R4 provides a high resistance between the diode and ground.


The audio voltage from the changer cartridge connected at J2 raises and lowers the bias voltage so that the diode shunt capacity change is proportional to the audio signal. CR-1 is connected in series with C3 across the oscillator coil so that the oscillator frequency changes with modulation. R5, like R4, is an isolating resistor.

R6 is not part of the actual modulator circuit, but limits the amount of audio reaching the diode to control modulation. As will be explained later, this resistor must be chosen experimentally for proper frequency deviation. Since only a minute amount of current flows through CR-1 and associated resistors, B2 can be left permanently in the circuit.

Compact Construction is an advantage of the transistorized design. The unit shown in Fig. 2 was constructed in a $23 / 4 \times 21 / 8 \times 15 / 8-\mathrm{in}$. minibox (Bud CU-2100A). If desired, it can be built into the record changer. Be sure to keep all leads short and direct, particularly those associated with the modulator and tuned circuit. Make them as rigid as possible for stability.

After drilling all holes in the box as in Fig.


4, mount the coil form (with L1 and L2), input and output jacks (J2 and J1) at one end of the box. Attach the $1 / 18$-in. aluminum transistor socket mounting bracket and "on-off" switch (S1) at the bottom center. Mount B2 vertically next to the transistor and B1 will then fit snugly into the remaining space (Fig. 2).
After completing the wiring, clip the leads of the 2 N 384 transistor to $1 / 4 \mathrm{in}$. and carefully insert the transistor into its socket. Be sure that the socket wiring is correct. It is not necessary to ground the transistor inter-lead shield. Connect B1 and the output of your changer to J1 and turn S1 to the "on" position. Tune your FM tuner or radio to the low end of the band (about 90 mc ) and adjust the coil slug until the oscillator carrier is heard.

Once the carrier is tuned in, modulate the oscillator with the changer and retune your FM receiver for best reception. If insufficient modulation is apparent, it is an indication that R6 is too small for the cartridge in your changer. If overmodulation is present, such as distortion on peaks, R6 is too large. In either case, change $R 6$ to a value of about 100 K or 50 K , respectively, until best audio quality is obtained. The value of $R 6$ given in the parts list is the best suited for cartridges having .5 -volt output.

Tuning Range and Antenna. With the coils shown, the oscillator will tune from about 95 mc down through TV channel 4. This permits the oscillator to be used with a television receiver tuned to either channel 4 or 5 . Excellent results will be obtained with older TV sets, but some sacrifice in fidelity will be noted with the newer, intercarrier type. Careful tuning, however, will permit reasonably good quality.

When used within 5 ft . of a receiver, no antenna is required for good quieting. For distances up to 50 ft ., a short length of wire, 2 ft. or less, should be connected to J1. Greater range is possible, but should not be attempted due to restrictions governing this type of equipment.

# What's Your Radio-TV Theory Quotient? By JOHN A. COMSTOCK 

Think you know your radio and television theory fairly well? Or are you a bit rusty on some points? Here's a test designed to reveal how much you really do know of the theory behind radio and TV. If you score 18 or more correct, your TQ is excellent; 15 to 18 correct it's good; 12 to 15, fair; 12 or less-you need to brush up on theory!

1. $\mathbf{A}$ $\qquad$ and $\qquad$ make up a resonant circuit (fill in the blanks).
2. A resonant circuit is said to be tuned when:
a) The inductive reactance equals the capacitive reactance
b) The inductive reactance is greater than the capacitive reactance
c) When total resistance is zero
d) None of the answers given above
3. When a resistor of 10 ohms is placed in parallel with another resistance of $\qquad$ ohms, the total resistance in such a circuit is 5 ohms.
4. A resistor of $10 \mathrm{ohms}, 10$ watts, is in parallel with another of the same resistance and wattage rating. What amount of power can be dissipated by the two?
5. The unit of measurement of impedance is the:
a) Farad
b) Ohm
c) Rel
d) Henry
6. Disregarding losses, the amount of power in the secondary of a transformer is the same as that in the primary winding.

## a) True

b) False
7. When a $\qquad$ of 15 microfarads is placed in parallel with one of the 10 microfarads, the total $\qquad$ equals:
a) 25 microfarads
b) 15 microfarads
c) 30 microhenries
d) 25 microhenries
8. The device used to convert sound energy into electrical energy is a:
a) Loudspeaker
b) Microphone
c) Antenna
d) Picture tube
9. A transducer is a:
a) Microphone
b) Loudspeaker
c) Light bulb
d) All of these devices
10. The $\qquad$ element in a transistor serves the same purpose as a cathode in a vacuum tube.
11. The $n-p-n$ and $p-n-p$ transistors are:
a) Junction type
b) Point-contact type
12. In television, interlaced scanning is used to:
a) Widen channel
b) Reduce flicker
c) Increase frame rate
d)
13. At what frequency does the horizontal scanning generator operate in a TV speaker?
a) 30 cps
b) 60 cps
c) 6 Mc
d) $15,750 \mathrm{cps}$
14. The sound transmitter at a TV station employs modulation.
15. S $\qquad$ signals are sent in the composite video signal to maintain the correct beam scanning pattern on the receiver screen as at the camera pick-up tube.
16. In the United States, a) negative, $b$ ) positive, picture tube phase transmission is used.
17. What is an intercarrier type TV receiver?
18. The blanking signals are transmitted to
$\qquad$ the electron beam in the picture tube during
19. In color TV, what signal corresponds to the video signal in a black and white system?
20. The video transmitter at a color TV station employs amplitude modulation.
a) True
b) False

## - Answers

1. Capacitor (or capacitance) ; inductance (or coil).
2. a) The inductive reactance equals the capacitive reactance.
3. 10 ohms $\frac{\left(R_{1} \times R_{2}\right)}{\left(R_{1}+R_{2}\right)}$
4. The total of the wattage ratings, 20 watts.
5. b) Ohm.
6. True (the law of conservation of energy).
7. Capacitor; capacitance; a) 25 microfarads.
8. b) Microphone.
9. d) All of the devices.
10. Emitter.
11. a) Junction type.
12. b) Reduce flicker.
13. d) $15,750 \mathrm{cps}$.
14. Frequency.
15. Sync. (or synchronization).
16. a) Negative phase transmission-white maximum signal, black minimum signal.
17. A TV receiver that uses a common I.F. for amplifying both picture and sound.
18. Blank out; retrace.
19. The " $Y$ " or luminosity signal, a combination of the three colors.
20. a) True.


Small, inexpensive and tops in performance for price, that's thls sound-level, applause meter.

ACOMBINATION applause and sound level meter is a device that is both useful and entertaining. If you should be looking for a nice quiet location for your new home, for instance, this instrument will help you do the job scientifically. More probable jobs would be locating rattles in cars, vibrations in machinery, and even termites in woodwork.


## Applause Meter

This inexpensive and compact applause and sound level meter has plenty of reserve gain and a headphone output. It can double as a hearing aid or remote "listener"

By FORREST H. FRANTZ, SR.



THE METER IS HELD IN PLACE ON THE PANEL BY THE METER CLAMP BRACKET

And when those amateur contests are held, here's your scoring device. We'll say no more about what it can do; as soon as you've constructed it, you'll start to find uses to which to put it.

High - precision sound level meters cost several hundred dollars. They're made out of the highest quality components and they have high caliber circuitry wired into them. As an experimenter, yoù don't need-and probably can't afford-such precision. This meter can be built for about $\$ 14$ less headphones and battery.

To achieve a slim package you'll need wood strips of the type used for garden trellises. These strips are $5 / 16 \times 11 / 8$ in. You need two of them $63 / 4$ in. long, and two 3 in . long. Glue and brad them together to form a frame on which the $311 / 16 \times 63 / 4$ in. perforated Bakelite front and back panels will
fit. I enameled my frame gray, but almost any color goes nicely with theperforated boards.
Drill the front and back panels as shown in Fig. 2. I used a fly cutter to cut the $21 / 8-\mathrm{in}$. meter hole. A coping saw will do just as well if you take some time to trim your work with a file. When you drill or saw the boards, back them with wood to prevent splitting. The holes at the corners are used to fasten the boards to the wooden frame.
The small perforated board is the wiring board. It's cut with a hack saw from the small sheet of perforated Bakelite board listed in the Materials List and is mounted on the meter in the final assembly. The only work required on the back panel is the mounting of the loudspeaker, which will serve as a microphone. (A loudspeaker is


PICTORIAL (BOTTOM VIEW) used in preference to a microphone
because it is less directional and more sensitive.) When it is mounted, saw off the long meter mounting screws (not its terminal screws) to a length of $1 / 2 \mathrm{in}$. from the back of the meter. Fasten the end of the screw to be discarded in a vise to do the sawing, and support the meter gently with your hand. Then shorten the volume control (RI-S) shaft to a length of $5 / 8 \mathrm{in}$. from the front of the bushing. Again, the end to be discarded is the end you should fasten in the vise.

Now, secure the meter M, the jack J, the transformer TR-1, and the 10 K volume control to the front panel. The meter is fastened to the panel as shown in Fig. 4. Connect the diode D and the battery as shown in Fig. 3 and complete the wiring for the transformer winding marked
"P." You can use six penlite cells (\#7) in series to obtain $9 v$., three cells in the location occupied by the battery in my model, three on the other side of the board. If you place the front and back panels on the frame, you'll be able to place these batteries more easily. Be sure that they don't short-circuit. You'll want to do some insulating with tape after you complete the entire construction job.
Now you're ready to wire the circuit board. Figures 5 and 6 will help you in mounting the components, the circuit itself is shown in Fig. 7. Connections are made by forcing the component pigtail leads through the perforations and soldering. Excess lead length is clipped off on the side of the board shown in Fig. 6. Note that the plus lead of C3 is used to form a common return, or



IF YOU EXPERIENCE FEEOBACK, MOUNT TRANSFORMER (TRI) PARALLEL TO THE PANEL, ON BRACKETS, INSTEAD OF DIRECTLY ON THE PANEL
and fasten the back to the wooden frame with wood screws.
The front of the completed instrument is shown in Fig. 9. To test it, turn the switch $\mathrm{On}_{n}$ and advance the volume control. Whistle or make some other noise. You should get deflection before you turn the gain all the way up because this is a very sensitive instrument. Listening with the earphone will be helpful. Note that the meter is disconnected
"ground," for the battery through the switch.
Use rosin-core solder for all connections and use a hot, clean soldering iron. Grasp the pigtails of the transistors between the transistor body and the point at which heat is applied, thus shunting heat away from the transistor during soldering. Tape up (or clip off) the center tap leads on TR2 and TR3; you won't be using them.

After you've completed the construction of the amplifier, you're ready to assemble the three sub-assemblies you've prepared. First, fasten the front panel to the wooden frame with woodscrews. Then place the amplifier within the case and solder the leads from the secondary of TR3 to the phone jack. Connect a lead from the phone jack to the negative terminal of $M$, connect Cl to the center lead of the volume control, and fasten a lead from the ground bus on the amplifier to the switch.

Now place the amplifier on the back of the meter and fasten the lower nut (which holds the meter clamp bracket against the meter panel) to hold the circuit board in place. Finally, fasten the negative return from the amplifier to the battery. The back of the completed instrument, with the exception of the speaker-mike, is shown in Fig. 8. Solder the leads on the side of the transformer marked " $S$ " to the loudspeaker terminals,

## MATERIALS LIST-APPLAUSE METER

$1 / 2$ watt carbon resisto:s, $\mathbf{1 C} \%$ tolerance
R3, R5 470 ohms
$R 4100 \mathrm{~K}$
R2 330K
R1.S 10K miniature volume control \& switth (Lafayette VC. 28)

C1 8 mfd , $6 v$ ultra-minlature electrolytic capacitor (Lafayette P6.8)
C3 $\quad 30 \mathrm{mfd}, 6 \mathrm{v}$ minlature electrolytic capacitor (Lafayette CF.104)
C2 25 mid, 6v ultra-miniature electrolytic capacitor (Lafay. ette P6.25)
C4 $\quad 100 \mathrm{mfd}, 6 \mathrm{v}$ miniature electrolytic capacltor (Lafayette MIKE CF.106)
MIKE $\quad 21 / 2^{\prime \prime}$ PM loudspeaker, 10 -ohm voice coil
TR1 $2 \mathrm{~K} / 10$ ohm output transformer (Lafayette TR-93)
TR2, TR3 $10 \mathrm{~K} / 2 \mathrm{~K}$ driver transformer (Lafayette TR-96)
T1, T2 2N107 transistor (General Electric)
D IN64 dlode (General Electric)
J Subminiature phone jack (Lafayette MS.282)
M 0.1 ma meter (Shurite 8300Z)
B battery (Mallory TR146F)
(See text for less expensive alternates)
1 sheet of minlature perforated Bakellte board (Lafayette MS.304)
$2 \quad 311 / 10 \times 63 / 4^{\prime \prime}$ minlatare perforated Bakelite boards (Lafayette MS-305)
13 K headphone (Lafayette AR-46; the jack is supplied with the headphone and does not have to be obtained separately if the headphone is obtained from Lafayette) 1 miniature knob (Lafayette MS-185)
All circuit components can be obtained from Lafayette Radio, 111 Jericho Tpke., Syosset, N. Y.

when the earphone is plugged in. If you don't hear anything, or if you don't get a deflection of the meter when the earphone is disconnected, turn the amplifier off and check your wiring.

If you get a squeal on the phone, or a constant full-scale deflection of the meter without having an input noise, you're having feedback trouble and you may have to shorten some of the input and output leads or turn TR-1 sideways and mount it on a bracket as shown in Fig. 10 to eliminate magnetic coupling.

Since both sides of the instrument case are perforated, the speaker-mike is sensitive to sound from front or back, a decided advantage. In order to be able to make comparisons of readings, provide the volume control with a scale marked in India ink on the front panel or fasten a paper scale on the panel with Carter's Rubber Cement. Place an index mark on the knob with a triangular file and fill it with white India ink to make it stand out. My model doesn't have this
feature, but it's worth adding. Then, if the sound level or applause hits peaks that require a reduction in the volume control setting, you can readily interpret levels without loss of reference by using the control setting in conjunction with the meter reading.
There are some modifications to the sound level-applause meter that you may wish to incorporate. One, meter response is fast; if you want to slow it down so that it will tend to hold peaks, connect an electrolytic capacitor across the terminals of the meter. Use from 10 to 100 mfd depending on how "slow" you want to make the meter; a 6 » capacitor is adequate.

If you want to use a crystal microphone instead of the loudspeaker, eliminate TR1 and connect the mike as in Fig. 11.
There it is-an inexpensive sound level meter that can be used for many measurements. It has a microphone to convert sound to electrical energy; and attenuator (the volume control) to choose a range; an amplifier to get the signal up to strength to drive a meter through the rectifier; and a phone jack to listen in if you wish. These are the features that you find on an expensive instrument. If you're wondering how a two-transistor instrument can be so sensitive, the answer lies in the transformer coupling which provides better match between the transistors and enables us to work them more efficiently.

"Some wise guy put in a 40 -walt bulb in place of a 6 CL6 power tube."


Determining leakage current at various collector voltages. Transistor under test is in socket at right of large meter.

HERE'S a valuable addition for the experimenter's lab which will perform more transistor checks than any commercial unit we have yet seen in the under$\$ 100$ class. You can build it for $\$ 30$ to $\$ 65$, depending on how you buy the parts.

Most economy-priced transistor testers indicate only the overall current gain, with a fixed input signal at a fixed supply voltage. The checker in Figs. 1 and 2 will, in addition, measure actual de leakage current, net current gain and ac voltage gain at low inputs.

If you live in a metropolitan area, you can buy nearly everything except the two audio transformers in surplus stores for an overall cost of $\$ 30$ to $\$ 35$. Value of all new parts, as listed in the mail order catalogs, is slightly under $\$ 65$-still a substantial saving. Using surplus meters, as I did, will reduce the cost about $\$ 14$. Substituting $5 \%$ resistors for $1 \%$ resistors could cut out another $\$ 5$.

This checker makes dc measurements with both a varying signal input and a variable supply voltage; checks ac measurements only with a variable supply voltage. All these tests are made under the generally used, common emitter circuit. In this circuit, the signal is placed between the base and emitter, and the output taken from between the collector and emitter as in Fig. 3A. Current gain, or beta, is the ratio of the input and output currents. All schematics in Figs. 3 and 8 show polarities for PNP transistors, but the unit

# Deluxe Transistor Tester for an Economy Price 

## Versatile checker provides complete flexibility in both input and collector voltage tests, plus ac measurements

By W. F. GEPHART


Panel view.

also reverses polarity, so that both PNP and NPN transistors can be tested.

All transistors have some leakage, which is collector-emitter current, that flows even without any signal current flow in the baseemitter circuit. If switch SB in Fig. 3A were opened, this leakage current would be read on meter MC. Net current gain for the transistor would then be the ratio of the difference (total current minus leakage current) in collector current to the input (or base) current.

Figure 3B shows how dc tests are made with this unit. The base (or signal) current, set by one of several resistors ( $R 1$ through R7), flows from the signal battery (B1) through base and emitter. Collector current flows from the variable supply voltage through M1 and from collector to emitter. If the base current is known, the current gain can be determined by reading meter M1.

In the complete circuit, there are a number of refinements. Since B1 is a mercury-type signal battery with voltage reasonably constant throughout its life, definite signal voltages can be set up without a monitoring meter. Resistors R1 through R7 provide fixed
input currents from 10 micro-amps to 1 milliamp. Meter M2 has several shunts, giving it full-scale deflection from 1 to 30 ma ; and resistor R14 provides a reasonable load for the transistor under test.

For Measuring Current Gain, the meter reads 1.5 ma full scale (in beta position of S5), and there are three current inputs. For transistors with high gains, the input current is 10 micro-amps, and the meter is calibrated 0-150 ( 10 micro -amps times a current gain of 150 equals 1.5 ma). For medium gain units (betas of $0-100$ ), the input signal is 15 microamps and the meter is calibrated from 0-100. For low gain units; the input signal is 30 micro-amps and the meter is calibrated from 0-50.

All of these inputs can be classified as low signal inputs and will indicate gains in line with manufacturers' specifications. The input signals and meter M2 range can be further increased (S1 and S5) to measure current gains at large input signals.
These measurements include leakage currents which can be checked and offset for testing the net current gain. Disconnect the base by setting S1 (base input) on "leakage,"


Interior view. Internal transistors are located on small chassis behind batteries.

move test switch S4 to the left and read the leakage current on meter M1. Then move the test switch to the right, and adjust R13 (leakage compensation) to zero the meter, by placing a "bucking voltage" (from battery B2) across the meter.

This compensates for the leakage current reading. After setting S 1 to the desired beta range, move the test switch to the left to indicate the total current; to the right for net current, or net beta. The total current is important as a measure of battery life in a transistorized device, while net current gain is important as a measure of performance.

Other refinements are switch S3 (type) which changes the polarity of both the supply and signal voltage for PNP and NPN transistors, and meter M2, which sets the supply voltage to the desired level.

Measurements at audio frequencies are made by comparing output with input. In this case, voltage measurement is more common than that of current (Fig. 3C). Place the audio voltage from a 3000 -cycle oscillator between the base and emitter on R8. Measure output voltage across the primary of T2 in the collector circuit to determine voltage gain.

To minimize loading on the transistor under test, take the voltage from the secondary of T2 and feed it through an emitter-follower (TR2) before reaching the power-consuming M2. Calibrate this meter in accordance with voltage appearing across the primary of T2 rather than the actual voltage across it.

Two ranges are used, switched by S2 (type of test), to give adequate readings with both high and low gain transistors. Since the AF input voltage is set at .1 volt by R17 and R18, the voltage gain is the reading on meter M2 multiplied by 10 . In actual practice, true voltage gain depends somewhat on frequency and loading. Check gain at other frequencies by plugging a .1 volt-source into jack J, which is insulated from the cabinet.

Construction and Wiring Sequence. The unit is built in a vertical cabinet, as in Figs. 2 and 4, with a small aluminum chassis held in place by the lower mounting screw of meter M1. Drill the panel and chassis as in Figs. $5 \& 6$. Install rubber feet at the corners of the cabinet bottom.

Now begin the wiring (Fig. 7) with the power supply, which should give about 0-30 volts de output, and about 15 volts at the junction of R21 and R22. Wire the oscillator and emitter-follower circuits next. The remaining sequence is not important, though resistors R1 through R7 should be wired in toward the last because of the space they occupy. Connect the batteries last to minimize the chance of shorting or drain.

Calibration. Four scales are shown on meter M1 (Fig. 2) ( $0-30,0-50,0-100$, and $0-150$ ), which are calibrated lineally. The 0-100

| MATERIALS LIST-TRANSISTOR CHECKER |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Desig. | Description | Desig. | Description | Desid. | Description |
| R1 | $4 \mathrm{~K} 1 \%$ resistor | R17 | 82K 1/2-watt resistor | T1 | driver transformer (Triad |
| R2 | 8K 1\% ( $4 \mathrm{~K}+4 \mathrm{~K}$ ) resistor | $R 18$ | 10 K potentiometer |  | A-81X) |
| R3 | $40 \mathrm{~K} \mathrm{1} \mathrm{\%} \mathrm{resistor}$ | R19 | 100 ohms 1-watt WW resistor | T2 | 26 volt filament transformer |
| R4 | $80 \mathrm{~K} 1 \%$ ( $40 \mathrm{~K}+40 \mathrm{~K}$ resistor | R20 | 400.0 hm 4 -watt potentiometer |  | (Merit P-2962) |
| R5 | $135 \mathrm{~K} 1 \%(120 \mathrm{~K}+15 \mathrm{~K})$ re. | $\begin{aligned} & \text { R21, R22 } \\ & R 23 \end{aligned}$ | $820 \cdot \mathrm{chm} 1 / 2$-watt resistor 25K 1\% resistor | T3 | modulation transformer 10K primary l:l turns ratio (Merit. |
| R6 | $270 \mathrm{~K} 1 \%$ resistor | R24 | 470-chm 1/2-watt resistor |  | A-3007) |
| R7 | 400K 1\% resistor | R25 | 1500.ohm 1\% resistor | TR1 | 2N107 transistor |
| R8 | $5 \mathrm{~K} 1 / 2 \cdot$ watt resistor | D1 | IN536 Silicon rectifier | TR2 | 2N308 transistor |
| R9 | 100.0hm 1\% resistor | D2, D3 | IN34, IN6 | J | closed circuit jack |
| R10 | 5.55-ohm 1\% resistor | \$1 | 1-pole, 9-position rotary switch | M1 | $4^{\prime \prime} 0.1$ ma meter |
| R11 | 1.72-ohm 1\% resistor |  | (Mallory 32112J) | M2 | $2^{\prime \prime} 0.1$ ma meter |
| R12 | 1 K 1 -watt resistor | S2, \$3 | 6-pole, 3-position rotary switch | NE | NE. 51 bulb and holder |
| R13 | 25 K potentiometer |  | (Mallory 3263J) |  | . 1 mfd .200 -volt capacitor |
| R14 | 2K 1/2-watt resistor | S4 | DPDT spring-return lever switch | C2 | 500 mmfd . capacitor |
| $R 15$ | . $27 \mathrm{meg} .1 / 2$-watt resistor |  | (Switcheraft 3037) | $C 3$ | . 005 mfd .200 -volt capacitor |
| R16 | . 1 meo. $1 / 2$-watt (Not required if neon bulb socket includes | S5 | 1-pole, 4 -position rotary switch (Mallory 3215J) | $\begin{aligned} & \mathrm{C4}, \mathrm{C5} \\ & \mathrm{C6}, \mathrm{CB} \end{aligned}$ | $100 \mathrm{mfd} \quad 50$-volt capacitor $10 \mathrm{mfd}, 25$-volt capacitor |
|  | dropping resistor: use only if standard bayonet base socket is used.) | S6 | DPST toople switch | C7 | 25 mfd .25 -volt capacitor |
| Misc. | $4 \times 7 \times 12^{\prime \prime}$ Minibox (Bud CU-2111 | 3 transistor sockets (Elco 3309), 6 knobs, 3 binding posts, tie points, rubber Yeet, hardware |  |  |  |


scale is used for reading the $0-1 \mathrm{ma}$ and $0-10$ ma ranges. Shunts for this meter (R9, R10, and R11) and the multipliers for meter M2 (R23 and R24) are based on 0-1 ma movements with internal resistances of 50 ohms.

After wiring is completed, R18 must be set and the scales on meter M2 calibrated. Both operations require use of an ac-dc vacuumtube voltmeter.
To set R18, connect the VTVM across R8, turn the unit on, and adjust R18 until the meter reads .1 volt ac. A test transistor need not be in the test socket at this time, but switch S2 must be on one of the ac positions.
To calibrate the de scales on meter M2, connect the VTVM between the bottom side and arm of R20, set S2 on "DC," and mark the points on the M2 scale where the VTVM reads $1.5,3,6,9,15$, and $221 / 2$ volts dc.
Calibrating the ac scales is somewhat more difficult, and requires either an audio oscillator or high gain test transistor, such as a 2N138 or 2N265.

If an audio oscillator is available, set it for 3000 cycles and connect it and the VTVM across the primary of T2. Turn the transistor tester "off," but set S2 (type of test) on "LO AC." Gradually increase the output of the audio oscillator, marking reference points for various voltages (as read on the VTVM) on the meter M2 scale. When full-scale deflection is reached, switch S2 to "HI AC," and make a second set of marks for the second scale.

If an oscillator is not available, turn the unit on with a high gain transistor in the test socket. Connect the VTVM across T2 primary, and set S2 on "LO AC." Gradually increase the supply voltage by turning R20 clockwise and mark reference points on the meter scale, based on the VTVM readings. When full scale is reached, switch S2 to "HI AC" and repeat. Due to the loading effect of D2 and D3, these scales will not be linear. Also, there may be a small standing current that requires the calibration of start part way up the meter scale.

The small transistor socket, upper right on the panel, accommodates over $90 \%$ of standard transistors for testing. For other types use the three binding posts located on the left side of the panel, marked E (emitter), B (base) and C (collector).

Testing Procedures. When using the unit, turn the "Leakage Compensation" control and "Voltage" control fully counter-clockwise before starting any test.

## Leakage.

1. Set type dial to "PNP" or "NPN" as appropriate.
2. Set type of test dial to "DC."
3. Set base input dial to "leak."
4. Set collector ma dial to "beta."
5. Turn voltage knob to desired value as read on small meter (M2).
6. Move test switch to "check" and read leakage on large meter (M1). (Read on $0-150$ scale, where 150 equals 1.5 ma . If

meter goes off scale, switch collector ma dial to higher range).
Beta Check without Leakage Compensa-

## tion.

1. Follow steps $1,2,4$, and 5 above.
2. Set base input dial to estimated beta range.
3. Move test switch to "check" and read beta on appropriate scale of large meter. Beta Check with Leakage Compensation.
4. Follow steps $1-6$ for leakage test.
5. Hold test switch on "test," and adjust "leakage compensation" to zero meter M1.
6. Set base input dial to est. beta range.

7. Move test switch to "test" and read net beta on appropriate scale of meter M1.
DC Current Gain Check at Various Input

## Signals.

1. Set type dial to "PNP" or "NPN" as appropriate, set type of test to "DC," and "voltage" as desired.
2. Set base input dial for input current.
3. Set collector ma dial to estimated out range. (If unknown, set for 30 ma range and switch downward.)
4. Move test switch to "check" and read output current on M1. To get current gain, divide input current (on base input switch setting) into meter reading. (This type of test can also be made with leakage compensated, as outlined above.)

## AF Gain Check.

1. Set type dial to "PNP" or "NPN" as appropriate, and set voltage to desired supply voltage, shown on M2.
2. Set base input dial to "AC," and type of test to "HI AC."
3. Move test switch to "check" and read output voltage on "HI AC" scale of M2. If reading is low, move type of test to "LO $A C "$ for better reading. (Since input signal is .1 volt, AF voltage gain will be the meter reading multiplied by 10 .)
Caution. Whenever turning the unit off, do not leave the type of test switch on either ac position, since the internal oscillator is drawing current from the mercury battery in this position.

## Clothespin Switch

A plastic, spring-loaded clothespin makes a nifty emergency switch for low voltage circuits. It offers something more sophisticated than a pair of wires which you touch together when you don't have a switch. And it has some merit and application even when the situation isn't an emergency. Furthermore, you are offered a choice of several modes of operation.

The clothespin switch is a momentary contact, normally open switch. You depress the contact or handle end to close the circuit. The pin I used had the necessary holes in the handles. Simply fasten the stripped wire ends
under nuts serving as terminals with small machine-screw heads serving as switch contacts. Fasten electrical tape over the nuts for insulation, and heed this safe rule: Don't use this switch in circuits with more than 20 volts or 1 ampere.

To make a normally closed momentary contact switch, attach the machine screws and nuts at the other end of the pin.

To convert the normally closed momentary contact switch to a regular on-off switch, simply stick a piece of bakelite or thick cardboard between the contacts to effect turn-off. --F. H. Frantz.


This tuned-radio-frequency receiver gives AM stations many of the high fidelity qualities of FM

By THOMAS A. BLANCHARD

WHEN the saga of radio is finally, fully documented by historians, too much emphasis cannot be placed on the Tuned Radio Frequency circuit. From its very beginnings in the "catwhisker" crystal detector, followed by Lee De Forest's vacuum tube detector, radio was guided through its golden days by the T.R.F. circuit. (And they were golden days, in spite of Lee De Forest's half-joking reference to the industry which he made possible through his invention of the triode as "De Forest's prime evil.")
The first T.R.F. receivers appeared with as many as four tuning dials on the console panel. Tuning in a station was something like opening a safe; each stage had to be tuned individually. After a few years, someone struck

Top-iront view of T.R.F. tunoz. Knob on left is bics control. Use of a cord drive mechanism with knob on right is optional (see text).
upon the idea of connecting the various tuning capacitors to a common dial and individual tuning capacitors were spaced across the full width of the chassis and connected together with belts and pulleys. No one had thought of the ganged tuning capacitor as we know it today.
Before long, however, the development of the superheterodyne receiver began to steal some of the T.R.F.'s thunder. The superhet was both highly sensitive and selective; the T.R.F. was not. Moreover, the superhet could operate on an indoor loop antenna while the T.R.F. required a rooftop hookup. By the early 30's, practically all radio manufacturers had abandoned T.R.F. circuits in favor of the superheterodyne. And until the comparatively recent coming of Hi-Fi, few persons stopped to notice that modern sets do not have that sharp, clear quality that T.R.F. sets, back in the "good old days," had.
Since the T.R.F. amplifies the incoming signal through a series of R.F. stages without introducing "foreign signals" to obtain reception, the quality of its reception is naturally superior to that of the superhet where the incoming radio signal is mixed with a signal of another frequency generated by the set's local oscillator, then amplified through a series of I.F. stages. The background "purr and swish" present in the reception of a superhet cannot be fully realized until a comparison is made with a T.R.F. set tuned to the same station. With a T.R.F. set, you can actually hear every little nuance in a record as clearly as if you were listening to your own record player. With a superhet, this is not possible. Thus, many Hi-Fi fans are turning to binaural tapes, recordings and radio reception. With a binaural system, records are provided with two sound tracks with separate amplifiers and speakers for each track. Binaural radio reception is obtained by receiving a simulcast station's FM signal with an FM tuner and its AM signal with a T.R.F. tuner, a T.R.F. tuner like that in Fig. 1. With speakers in opposite corners of the room, you are surrounded by sound, stereophonic-like sound.
Since T.R.F. sets breathed their last commercially popular breath, many great improvements have been made in radio components, particularly in tubes and in coil efficiency. The circuit employed in the tuner described here is basically the same as the circuits of 30 years ago, but in place of the old, pear-shaped O1-A, 26 and 27 triodes, there are modern, miniature multi-element tubes. Similarly, the old, large, low-efficiency, air-wound coils have been superseded by precision-wound, high-Q ferrite-tuned units of extremely small dimensions. (Then too, we cannot overlook the development of the dry electrolytic capacitor. Today, many a 100 mfd . unit is smaller than the early $1 / 4 \mathrm{mfd}$. paper capacitors.)


3 T.R.F. TUNER-PICTORIAL

Construct your T.R.F. tuner on a stock-size, $2 \times 5 \times 7 \mathrm{in}$. blank chassis. Figure 2A shows the general arrangement of parts and their positioning. All components should be assembled first from the Materials List and their individual mounting dimensions used as a final guide to the correct location for drilling and punching chassis holes.

Tube socket openings are made with a $3 / 4$-in. chassis punch. The mounting holes for the 7 -pin miniature wafer sockets are drilled to clear 3-48 $\times 3 / 8-\mathrm{in}$. rh machine screws. Sockets mount on 1 -in. centers. The R.F. coils are mounted in aluminum shield cans to which are attached 6-32
mounting screws on $1 / 1 / 8$-in. centers. The mounting holes for shield cans are drilled first, then the $1-\mathrm{in}$. chassis holes which provide access to the R.F. coil lugs.
Drill a 3 名-in. hole in the front panel of the chassis for mounting the 50 K potentiometer bias control. An additional $3 / 8$-in. hole will be required for the panel shaft bear-ing-dial cord drive if this type of tuning mechanism is used. (Ordinarily, 3 -gang tuners are furnished with a $1 / 4$-in. shaft to which a tuning knob or dial may be attached directly. A Croname slide-rule dial also engages a tuner with a $1 / 4-i n$. shaft.)
The rear panel of the chassis has a $3 / 8-\mathrm{in}$. hole for mounting the phono jack flanked by two mounting holes on $11 / 18-\mathrm{in}$. centers to clear $3-48 \times 3 / 8$ in. rh machine screws. Drill two $3 / 8-\mathrm{in}$. holes $1 / 2 \mathrm{in}$. apart for the interlock receptacle and elongate with a flat file after snipping out the metal separating the two holes. Drill one $3 / 8-\mathrm{in}$. hole on the top of the chassis for the antenna binding post and two for the power transformer leads and insert rubber grommets in the power transformer holes. Finally drill $1 / 4-\mathrm{in}$. holes under each section of the tuning capacitor for the leads which terminate on their stator lugs. The rotors of the tuner are automatically grounded when the 3 -gang unit is bolted to the chassis.
Because tuners vary in design, mounting hole locations and screw sizes vary. Locate these chassis holes after obtaining the tuner. Note, too, that the capacitor in our model is mounted vertically.


Your capacitor may be designed for horizontal operation. There is ample room on the chassis for either mounting.

Before the stationary components are mounted to the chassis, install the coils in the aluminum shield cans. All coils are J. W. Miller, high-Q, unshielded. Each is provided with a $1 / 4$-in. threaded bushing for universal mounting. When ordering coils, obtain the Miller S-32 shield cans also. A $1 / 4-\mathrm{in}$. hole is drilled in the top center of each can and the coils are mounted in them. (If you have three discarded I.F. transformer cans $11 / 8 \times 21 / 8$ in., you can mount the coils in them.) Place a fiber or bakelite washer on each side of the chassis when mounting the antenna binding post, and make certain that the mounting screw is in the center of the $3 / 8-\mathrm{in}$. clearance hole. If this binding post is accidentally grounded to chassis the tuner will not work. Wire the tuner as in Figs. 3 and 4.
The unit employs its own isolated power supply; to use, connect to power source and plug its phono output into the "phono" jacks of any radio or TV set or amplifier. A single conductor shielded cable connects the tuner output to the

## MATERIALS LIST-T.R.F. TUNER

No. Description
$12 \times 5 \times 7^{\prime \prime}$ slandard chassis base (Bud \#CB-629, zine plated \#22 ga. steel)
3 7.pin miniature wafer sockets (1-in. mounting holes)
TV power cord and connector
phono jack
2 phono plugs and length of single conductor cable with shield braid $\frac{1}{3}$ antenna binding post
3 J. W. Miller \# 5.32 shield cans ( $11 / 8 \mathrm{sq} . \times 21 / \mathrm{e}^{\prime \prime}$ high)
$8 \quad 3.48 \times 36^{\prime \prime}$ rh machine screws and nuts
$86.32 \times 3{ }^{\prime \prime} 8$ th machine screws and nuts
2 3/8" rubber grommets
2 \#6 soldering lugs
2 2.lug terminal strip
$23 /{ }^{\prime \prime}$ fiber or bakelite washers
1100 ma . selenium half-wave rectifier
Capacitors
$\frac{1}{2}$ 3-gang tuner with trimmers ( 365 mmf . per section)
255 mf ., 50 v. electrolytic (Cornell-Dubilier "Beaver")
$150-50 \mathrm{mf}$.. 150 . electrolytic (Cornell-Dubilier type BBRD)
1.01 mf molded (Cornell-Dubilier \#4S1 Cub)
1.02 mf . molded (Cornell-Dubilier \#4S2 Cub)

1150 mm . ceramic (Cornell-Oubilier .00015)
Resistors
2330 ohm, 1 w. (IRC)
1100,000 ohm ( 100 K ), $1 / 2 \mathrm{w}$. (IRC)
147 chm .1 w. (।RC)
11 K ( 1,000 ohms). 1 w. (IRC)
1 50K potentiometer ( 50,000 ohms; IRC control \#13.123)
Coils-Transformers
1 Stancor power transformer (PA-8421) Primary: 117 v., 60 CPS., secondary: $125 \mathrm{v}, 50 \mathrm{ma}$. and 6.3 v ., 2 amps
1 High." $Q$ "" broadcast coil (J. W. Miller \#A.5495-A)
2 High-'Q'" broadcast R. F. coil (J. W. Miller \#A.5495-RF)
amplifier. The inner lead of this cable is soldered at each end to a "phono" plug, the outer metallic braid is soldered at each end to the plug shell. Use care when making this connection to see that no stray strand contacts the inner conductor.
With wiring completed, tubes in sockets, output connected to amplifier, and power on, the set is ready for alignment. (For an antenna, a length of wire 4 or 5 ft . long is usually ample.) With the bias control turned to maximum resistance, rotate the tuning capacitor until a local station is heard. Starting with the screw adjustment on the antenna coil, turn in or out for the strongest signal. Next, adjust the screw on the 1st R.F. coil for further improvement in the signal. Turn down the volume control on the amplifier as the signal, through coil adjustment on the T.R.F. tuner, becomes louder. Finally, adjust the ferrite slug screw on the 2nd R.F. coil, and, with a plastic handled screwdriver, make further sensitivity adjustments on the trimmers, starting with C-1.

Unlike its ancestors, this T.R.F. tuner will have almost the sensitivity and selectivity of a superheterodyne. Moreover, it is unlikely that you will ever require more than 12 ft . of indoor ah-tenna-even in a remote location. The variable bias control should not be confused with a volume control. Its function is to allow as much signal to reach the tuner as it can handle without overloading the input. On distant stations, the resistance in the cathode circuit will be at minimum ( 330 ohms). On more powerful and on local stations, rotating the 50 K potentiometer will increase the cathode resistance to the point where the signal is free from distortion. Once you become familiar with this control's function, you can replace the round knob with a pointer and set the bias control at predetermined points.


Shart Wave Guidepasts
By C. M. Stanbury II

## How to select the markers you need to make your SW listening more interesting - and more comfortable

WHETHER your SW interest is accurate time signals, standard frequencies to check calibration equipment, international news, or any other listening that falls into the non-DX category, you want to turn on your set, tune the appropriate frequency, and just listen-as you would with an AM radio or TV set. Unfortunately, this is not always possible. Short wave provides distant reception, all right, but it tends to be unstable. A station which is loud and clear one night may be almost inaudible the next. On a given evening, Latin American stations may be found throughout the 25 -meter broadcast band, with Europe top dog a week later.

Happily, SW stations have come up with an effective method for coping with this situation: most use more than one band. If the upper frequency has "skipped," then the lower channel will probably be strong; if the basement spot is absorbed, then the high one should get through. After a little experience (and with our listing in Table A) you'll know exactly where to tune for what. With "Short Wave Guideposts," plus a few moments of checking, listeners will know what to expect for at least the next 24 hours.

Short Wave Theory. Reception is dependent upon reflection around the curvature of the earth by the ionosphere-a region of ionized gases extending in four belts (two at night) from 50 to 200 miles up (Fig. 1). Ionospheric density varies from day to day, causing the erratic reception we have described. Oversimplifying, the upper layers reflect higher SW frequencies-while lower layers absorb basement channels. For reception, frequency must be low enough for reflection but sufficiently high to escape absorption. The result is a narrow band of optimum frequencies, always higher during the day than at night, and seldom the same from one week to the next.

Describing the above as an oversimplification is a gross understatement. To name only a few complications: one of the lower layers is capable of reflection even under normal conditions; the two upper layers combine at night; during ionospheric disturbances (magnetic storms) the ionosphere's reflecting capacities are impaired, while absorption is increased (such a paralysis is usually limited to upper and middle latitudes) ... and so on, until the SWL is lost in a maze of theory.


QSL card and folder from Radio Poking. Not the most aceurate SW broadeastor informationwise, Radio Poking does serve as a technical guide pest for other Asiatic stations.

## RADIO PEKING

Peking, China
Dec. 161958
Dear Mr. Stenbury,
We are glad to confirm your reception report on our programme transmitted on $19 \mathrm{~m} . \mathrm{b}$. kole dated Nov.7, 1958 We thank you for writing and hope you will continue to do so.

Sincerely yours,
Radio Peking

An Empirical Approach is needed: which brings us to that term, "skip." Originally it meant a signal had passed through the ionosphere without being reflected-the signal had "skipped." While this usage is still valid, "skip" now also refers to reception conditions from a specific area, such as good Asiatic skip, or no African skip. And skip provides the solution to our problem.
When a transmitter which is usually weak or covered by interference puts in a strong signal, there is good skip from this area and other stations from it will be coming through on nearby frequencies. For example, if in the afternoon Radio Brazzaville on 11725 kc is easily readable, it means that absorption is down and listeners can look for other Africans here on the 25 -meter bands. In other
words, Radio Brazzaville serves as a short wave guidepost.

Such guideposts should indicate the absorption level (how low you may comfortably listen) and the maximum usable frequency. As an absolute minimum you will need at least two sets of markers, one for the tropics and another for upper and middle latitude stations. The system can be as complicated as you desire, but Table A will adequately serve the needs of most. Included are indicators for reflection on each of the high bands during daylight hours and on the low bands at night (with a dropping sunspot count even these will skip, especially after midnight), and six stations to measure absorption. For the casual listener who concentrates primarily on upper frequency bands, reflection is the key

TABLE A-SHORT WAVE GUIDEPOSTS

| $\begin{aligned} & \text { BAND } \\ & 13 \mathrm{M} \end{aligned}$ | KC/S 21675 | BBC STATION | COUNTRY | TIMES | INDICATES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 M | 21535 | ELWA | England | Daylight | Band open, U/M |
|  | 17890 | HCJB | Liberia | Daylight | Band open, tropics |
|  | 17885 | Radio Japan | Ec | Daylight | Band open, tropics |
| 19M | 17705 | Voice of America | Japan | 1930-2030 EST | Band open, Asia |
|  | 15375 | BBC | Moroceo | Daylight | Band open, U/M |
|  | 15185 | Voice of America | England | Night | Band open, U/M |
| 25M | 15115 | HCJB | Philippines | $1800-2100$ EST | Band open, Asia |
|  | 12010 | Radio Poking | Ecuador | Night | Band open, tropics |
|  | 11930 | BBC | China | Early evening | Polar absorption |
|  | 11915 | HCJB | Englan | After Midnight | Band open, U/M |
| 31 m | 11725 | Radio Brazzaville | uador | After Midnight | Band open, tropies |
|  | 9745 | HCJB | Fronch Congo | Aftornoon | Tropic absorption |
|  | 9673 | Circuito CMQ | Ecuador | After midnight | Band open, tropics |
| 49M | 9009 | Kol isral | Cuba | Daylight | Tropic absorption |
|  | 6150 | Voice of Amarica/BBC |  | Daylight | U/M absorption |
|  | 6050 | HCJB | England | Afternoen | U/M absorption |
|  | 6025 | Radio Nedorland | Eevad | After midnight | Band open, tropies |
| Noter U/M refors to upper/middio latifudes; |  |  | Notherlands | 2030-2250 EST | U/M absorption |

issue; but if you are interested in expanding your range, absorption becomes vital.

Using The Table. Suppose you note Tel Aviv on 9009 kc putting in a strong signal: you will have no trouble picking up numerous European and North African stations on 31 meters ( 9500 through 9775). You should also check the Voice of America relay in England on 6150 . If this one comes through at all, there will be good European reception on 49 meters (5950-6200) and even lower, with Asia showing up after midnight.

This brings us to a gray short wave area, channels below 49 meters. Because of static (a spring and summer problem), and only erratic distance reception, most non-DXing SWLs simply never bother tuning down here. However, under the conditions described above, listening could be as comfortable as on the more conventional bands. We leave it to each individual reader to compile his own set of "basement" guideposts. With reflection possible at several different levels, and the resulting intricate patterns of skip and absorption, such a listing is beyond the scope of this article.

Rare Skip. On April 7, 1961, an east coast listener noted Springbok Radio in South Africa with loud readable signals on 2350 kc at 8 p.m. EST. He promptly tuned down to 1286
(on the broadcast band) and within minutes picked up a $10-\mathrm{kw}$ Johannesburg transmitter carrying the same all-night program.
This admittedly is an extreme example, actually falling into the category of DX. It does illustrate an important point, however, even for the casual SWL: short wave is never a pat proposition. On a one-shot basis, the most unusual and interesting transmissions can be heard with only a little effort, providing the listener is alert.

Look at it another way. Assume you have a special interest, let's say news and commentary from Asia. In the eastern U.S., only English language broadcasts from Japan and Red China are consistently received with good signals. But suppose in the early evening Peking has an exceptionally strong signal on 12010 kc . You should then look for Delhi (11900) with English for Burma at 7:30 p.m. EST, and HSQ Thailand (11910) at 12:20 a.m., beamed to our west coast. These broadcasts, especially from Delhi, might not be heard at your location more than once or twice a year, but that is certainly better than not at all. With the aid of a good reference list such as White's Radio Log (p. 151), possibilities are endless. To make full use of short wave guideposts, consistent listening and patience are required.

## Fire Extinguisher Chases Radio Bugs

- The chilling effect of a carbon dioxide fire extinguisher will help you locate' a defective part in a radio circuit that plays erratically. Often a set works fine for a few minutes after you turn it on, and then suddenly misbe-

haves or goes dead. The trouble may be a part that expands with heat after current has been flowing through for a few moments. Spray suspicious parts with $\mathrm{CO}_{2}$ gas one at a time. The intense cold will contract a defective component so it can work normally.

You can also use Charg-A-Can Freon \#12 with a suitable adapter (sold by refrigeration supply houses). However do not use carbon tetrachloride fire extinguishers since the fumes are highly toxic.-T. A. Blanchard.

## Read Battery Drain Quickly

- To measure the battery drain in radios and experimental electrical circuits, use this special test lead. Cement a thin brass or aluminum strip to each side of a piece of plastic.


Then solder leads to each metal strip and connect them to your VOM. Insert the lead between the batteries and terminals to make quick current-draw readings.-G. A. WesenFELD.


Hand approaching metal plate causes the lamp plugged into control receptacle to light up. Bells, motors, etc. may be plugged into the $110-120 \mathrm{v}$ outlet.

## Experimenting With a Capacity Control

No phototubes or light beams are required with this simple electronic unit which turns lights on or off with a mere wave of the hand

By THOMAS A. BLANCHARD

THIS capacity control is simply another application of the versatile oscillator. In respect to the jobs it can do, it is similar to the photo-electric control. No light beams or phototubes are required to trigger it, however, only the presence of a human being near it.


Capacity control is housed is a stock radio chassis cabinet. Outlet is at left, Insulated control terminal is at right of dial on front panel of control unit.

The circuit can be wired for sensitive or for ultra-stable operation. For sensitive operation, for example, a metal plate could be attached inside a store window. A shopper standing outside, then, placing his hand near or on the window glass would cause a display in the window to light up. When he moved away from the "sensitive" area, the lights would go out. (By substituting a length of insulated wire for the metal plate, a larger area of the window could be made sensitive to the approach of a shopper. There would never be actual contact between the windowshopper and the control because of the plate-glass barrier.)
It works like this: A small R.F. choke and tuning capacitor is inserted in series with the circuit's oscillator coil's cathode lead (see Fig. 3). Varying the capacity across the R.F. choke provides the sensitivity control so that the point at which the plate current relay picks up can be accurately determined.

Omitting the choke and tuning capacitor, gives a much more stable effect. The control then requires actual physical contact for triggering. Thus, if the control wire is attached to a metal door knob, for instance, you have to touch the knob before the circuit will operate. The control lead can be attached to any ungrounded metal object. When touched at any point it will cause the control relay to close. There is no danger of shock.
Suppose you have water seepage in the basement of your home. Mount the control lead $1 / 4 \mathrm{in}$. off the basement floor and if the water rises $1 / 4 \mathrm{in}$. it contacts the control lead, causing an alarm to ring. Applications of a capacity control are almost limitless--not to mention its amusement (and educational) value. For example, you can cut a piece of aluminum foil

remaining oscillator coil lug connects the grid of the 117L7/M7 through the 500 mmf fixed capacitor.

The plate circuit relay I used was a Sigma Type $4 F$ with a 10,000 -ohm coil. The less expensive Potter and Brumfield Type LS-5 with $10,000-$ ohm coil can be substituted for it and is readily available from most electronics parts suppliers.

A small porcelain feed-through insulator brings the sensitive grid actuating lead out through the panel. A capacitor is inserted between this insulated terminal and the \#4 grid pin on the tube socket. This value was originally .01 mfd in the miniature size. If the midget size isn't available, use .005 mfd since it is

## WATERIALS LIST-CAPACITY CONTROL

1 metal radio chassis cabinet, $4 \times 5 \times 6^{\prime \prime}$
1 octal wafer socket
$13 / 4^{\text {" }}$ lead-in or feed-thru insulated bushing
1 amphenol female receptacle \#61-F1
1 10.000-ohm plate current relay; Sigma 4F or P\&B LS. 5
1 Hartley oscillator coit, 6/12SA7 type (Stanwyck 225 or 212; Miller 5481-C)
1 R.F. choke approx. 100 th (see text)
1 midget variable capacitor. 60 to 1000 (max.) mmf.
$120 \mathrm{mfd} . \mathrm{L} 150 \mathrm{w} . \mathrm{v}$. electrolytic eapacitor, tubular pigtail type
1.005 or .01 mfd . paper capacitor, 150 w.v. or higher

1500 or 470 mmf . mica or ceramic fixed capacitor
$13.3 \mathrm{megohm}, 1 / 2$-watt resistor
$3 /{ }^{\prime \prime}$ " rubber or plastic grommet
$6^{\prime \prime}$ line cord and plug
1 117L7/M7GT vacuum tube
miscellaneous hook-up wire, $5 / 8 \times 21 / 4^{\prime \prime}$ metal spacers, bar knob and dial plate
about 1 ft . square, attach the control lead to one corner and conceal it under a carpet. Your "victim" will jump when he walks over the "hot spot" and rings a bell or causes a table lamp to light up.
The unit (Fig. 2) is constructed in a standard $4 \times 5 \times 6-\mathrm{in}$. radio chassis cabinet ( 4 in . deep). Lay out the panel as shown in Fig. 4 and mount the components (see Fig. 5). Mount the wafertype octal socket on $1 / 4 \times 5 / 8 \mathrm{in}$. long metal spacers secured to the control panel with 6-32 machine screws.

The oscillator circuit is a Hartley electroncoupled type using a 117L7/M7 combined pentode and half-wave rectifier. The heater of this tube operates directly off the power line. No step-down transformer is needed.

The oscillator coil is an ordinary 455 kc . radio type of the simple Hartley 3-terminal design (sometimes called a 6SA7 or 12SA7 coil). This coil, depending upon make, may be mounted with a screw and nut, or snapped into a suitable hole drilled in the control panel.

The outside end of the oscillator coil (the ground side) goes to pin \#7 of the octal wafer tube socket, line cord, etc. The tap or center coil lug attaches to the cathode (pin \#8) through the R.F. choke and midget tuning capacitor for sensitive operation. For stable operation, run the tap directly to pin \#8. The
also physically smaller than a standard size .01 $m f d$ unit and affords ample coupling capacity in this circuit.

Bring the line cord through a $3 / 8-\mathrm{in}$. plastic or rubber insulating grommet inserted in the hole located adjacent to the tube socket. Linecord leads terminate on socket pins \#2, 6 and 7 as shown in Fig. 5. Connect one lead to socket pin \#2 and one terminal of the female ac receptacle mounted on the panel, another from the receptacle and through the relay contacts to pin \#6 and \#7, thus providing a $110-120-v$ control circuit which is switched on or off by the magnetic action of the relay coil.

Note that the relay is provided with single pole, double throw contacts. When wired as shown in Figs. 3 and 5, no current reaches the receptacle so long as there is no contact with the porcelain feed-through terminal. Touching this screw, or approaching a metal plate attached to it, however, causes the relay to energize and completes the circuit to the a.c. outlet receptacle.

Now, if the reverse action is desired-causing a light to go out when the control is approached, say-you need only move the receptacle lead from relay contact B to A . The moving contact connection of the relay (the armature connection) is not disturbed.

To test, connect a short piece of hook-up wire across the midget variable capacitor where

the R.F. choke will eventually be located. (In fact, even the capacitor itself isn't needed at this point.) With power applied, the relay should close when the insulated terminal screw is touched. The control can be used for non-sensitive applications in this form.

For sensitive control, the variable capacitor can be any midget type between 60 and 100 mmf . A less expensive com-pression-type trimmer can be substituted here if more readily available. The R.F. choke may require some experimental work in order to obtain maximum
 sensitivity from the circuit. For the choke, we used a TV "peaking coil" of approximately 100 microhenries. Both peaking coils and R.F. chokes of the miniature type are wound on Bakelite pigtail forms that resemble 1 -watt resistors. When connected across the stator and rotor lugs of the tuning capacitor with plates wide open, the control relay should pull in. Now, slowly closing the plates, you should reach a point where the relay drops out.
When this action is obtained, the choke will be of suitable inductance. However, if the relay remains energized with the plates of the tuner fully meshed, the inductance is excessive, and turns will have to be taken off.
You may find it more convenient to make your own choke. All you will need is fine enameled magnet wire (size \#34 to \#40). Measure off about 12 ft . and scramble-wind the wire on a 1 -watt insulated resistor having a high resistance (22 megohms or more.) Carefully scrape off insulation from the leads and solder one to each pigtail.
Add or subtract turns until the relay will release when the variable capacitor plates are about at the half-closed position. Install in the chassis cabinet with a suitable dial plate and bar knob to adjust the tuning capacitor and attach a short lead and metal plate to the control's insulated terminal. Plug a light bulb into the receptacle and rotate the capacitor knob until the light comes on.
Now back off the sensitivity control until the light just goes out. Leave the control alone now, and bring your hand toward the metal plate. At a point ranging from 6 inches to one foot, body capacity will cause the control to turn on the light. Withdrawing your hand will turn off the light.
If the length of the lead and/or size of the metal plate is changed, the control must be


Looking into rear of control box with cover removed. Front panel and chassis are one, making for sim. plified construction.
readjusted. Note, too, that if too much fixed capacity is attached to the control, the relay will remain locked-in. If this happens, use a smaller metal object, or shorter connecting line from control to plate.
Since the capacity control employs the popular ac-dc hook-up, you will find that it operates best when its ground circuit plugs into the ground side of the power line. (Reverse the line plug to determine the best operating position.)
Attach a metal drawer pull to the chassis cabinet for carrying convenience. To provide ventilation for the tube, punch two rows of holes in the back panel of chassis cabinet or use perforated Reynolds do-it-yourself aluminum for the box cover. (You can cut this material with a kitchen shears.)


Transfer letters are applied by laying the sheet on the ponel and rubbing the back of the desired letter.

# Simplified Panel Lettering <br> In most cases, transfer letters offer the greatest advantages 

By W. F. GEPHART

PROVIDING panel lettering for custommade equipment can be a problem for the experimenter. The usual devices are typewritten strips, custom-made etched plastic plates, or decals. Typewritten strips usually look amateurish, and etched plastic plates are expensive, so decals are most commonly used.

There are disadvantages in the use of decals, however. Complete words are available only in limited colors, and in one type face and size. Making up words that are not included in the package is quite a job, due to the skill required in handling the small individual letters.

Using Transfer Letters, available in art supply houses, overcomes these difficulties. These letters and numbers, on a large sheet, can be transferred individually to another surface by rubbing the area over and around the letter (Fig. 1). The pressure of the rubbing and the heat generated by the friction combine to transfer the letter to the panel.

The Letter-On Co. has complete alphabet and number sets in nine varied styles of type, 11 sizes, and five colors. A set includes capital and lower case letters, numerals, and punctuation marks, all on a large translucent sheet. The sheet is laid on the panel and the letter positioned, and then the letter is transferred to the panel by rubbing it with a burnishing tool. (The rounded end of a fountain pen works very well.)

After the panel is completely lettered, the excess wax adhesive is cleaned off with a cloth dampened with benzol or rubber cement thinner. It is best to spray the panel with a couple of light coats of varnish to protect the letters against scratches. Do not use plastic spray with an acetate base, as this will damage the letters. Ordinary spray varnish, or the spray varnish used in retouching oil paintings, such as "Spray-Var," will give excellent results.

Decals Are Easier to Use and may be applied more quickly; if complete words are

available (and one size and color is sufficient), you will probably prefer to use them. But if words must be made up from individual letters, or you want a variety of type sizes and/or colors, transfer letters are better. One transfer lettering set is available in a size and style that matches the decal letters usually sold in radio parts houses. This is "12-point Airport," available in "Prestype," which can be secured from local dealers or from the Letter-On Co., 9605 Bulls Run Parkway, Bethesda, Md. This matches the type used in the "Tekni-Cals" decals. When these are employed, decals can be used for complete words and transfer type to make up words.

For the panel shown in Fig. 2, most of the words were not available in decals. Also, the use of capital letters for the names of the controls and lower case for the functions minimized confusion.

Transfer letters work best on smooth surfaces, such as natural or gray hammertone panels, but they will stick to most surfaces. They are excellent for re-lettering meter faces. For best adhesion, the surface should be slightly warm, and it helps to put a 25 -watt bulb under the panel during lettering.

Employing transfer letters makes possible the use of unusual words, with both capital and lower case letters.

## TV Circuit Puzzle

By JOHN A. COMSTOCK

Here's a unique electronics puzzle. The object is to fill in the empty blocks with the names of the circuits found in a typical television set. By referring to the boxes already labeled and using your knowledge of black-and-white TV circuitry, see if you can supply all the right names. The solution is on page 138 .


# Transistorized Hi-Fi Preamplifier 



MAGNETIC or variable reluctance phonograph cartridges usually require a boost of their output voltage-5 to 30 millivolts-in order to obtain satisfactory operation from a standard power amplifier. (Crystal cartridges, on the other hand, usually deliver sufficient output voltage- 600 to 4000 millivolts, de-

By HAROLD P. STRAND

The transistorized preamp under test with a mike and power amplifier shows conslderable gain over direct input from mike to power ampllfier. Control slde of chassis (inset) has three controls: troble and bass tone controls (left and right) and volume control combined with On -OH switch (center).


When soldering at terminals, apply sutficient heat for the solder to flow completely around leads.
puts and also a microphone input, bass and treble control, as well as a volume control with switch. Since a small self-contained battery is used with this unit, no outside power connections are required and the unit can be placed up to 175 ft . away from its associated equipment if desired.

The transistorized preamplifier can be built from a kit supplied by Lafayette Radio or you can build it entirely from the group of standard parts given in the Materials List. The chassis, however, is not a standard size, so it is bent up from sheet aluminum to the dimensions given in Fig.


1. It can be bent up in a vise over a hardwood block, but a bending brake will make a better job of it. If you don't have a brake, perhaps your local sheet metal shop will do this for you on theirs.

Lay out the rectangular socket holes on the metal and then drill a number of holes within the rectangular area. Break out the metal between the drilled holes and dress to size and shape with a file. Fix the sockets in their openings on the chassis, positioning them so that the terminal with the widest spacing (collector) will be located with respect to the other components as shown in Fig. 3. (A locking ring is forced down on the lower end of each socket, securing them in place.) Now install the jacks and controls, as well as the long terminal strips. Be sure to place as indicated, with the volume control and On-Off switch in the center. Secure the slide switches in their openings, attach the battery holder to the top of the chassis-using for this purpose one of the bolts securing a terminal
strip, one in a drilled hole $9 / 18 \mathrm{in}$. away - and press the rubber grommet in its hole. Cut off the shafts on all three controls to about $1 / 2$ in. before installing them unless the extra length of shaft is required for mounting in a cabinet.
Although a relatively large number of parts must go on the chassis, good layout and the number of terminals or tie points provided makes a neat job possible.
The pictorial and schematic wiring diagrams


The designations TR1, TR2 and TR3 indicate the transistors; SWI is the low or high level switch: J3 is the low impedance input: J2, the high; J1, the output: and SW2 is the phono or milke switch.
found useful, or a 60 watt iron can be used. At points where bare leads may cross, use small spaghetti tubing on them to avoid shorts-except of course where they go to the same terminal.
Figure 5 shows the completely wired unit in an underside view where the neat and compact placement of parts and wiring is evident. Check all connections against the diagrams and then install the battery and 2N190 transistors. A battery holder can be made as shown in Fig. 7B; a top view of the unit, ready to be used, is shown in Fig. 6, above.


MATERIALS LIST-TRANSISTORIZEO HI.FI PREAMPLIFIER No. Reqd.

Description
transistor sockets MS-275
G.E. 2 N190 transistors

9 volt Burgess 2 U 6 battery
male and 1 temale battery snap-on clip or snap.on, two. terminal insert
O.P.D.T. slide switch (SW17)
D.P.S.T. sllde switch (SW16)

RCA tyoe phono jacks and olugs
$110 \cdot \mathrm{~K}$ ohm volume control with switch ( $K=1000$ ), minia. ture type VC-28
$250-\mathrm{K}$ ohm controls (no switeh), miniature type VC. 36
3 miniature knobs for $1 / 8^{n}$ shaft MS-185
4 soider luo terminal strips each with 2 ground lugs, 5 insulated luas
( 7 total) Cinclı-Jones $55-A \quad 22 \cdot \mathrm{~K}$ ohm $1 / 2$ watt resistor $27-\mathrm{K}$ ohm $1 / 2$ watt resistors $3 \quad 10-\mathrm{Kohm} 1 / 2$ watt resistors 2200 ohm $1 / 2$ watt résistors $1 \quad 15-\mathrm{K}$ ollm $1 / 2$ watt resistor
$120 \cdot \mathrm{~K} \mathrm{ohm} 1 / 2$ watt resistors 13900 ohim $1 / 2$ watt resistor
$220 \cdot \mathrm{~K}$ olm $1 / 2$ watt resistor 14700 olum $1 / 2$ watt resistor
330 ohm $1 / 2$ watt resistor $1 \quad 270-\mathrm{K}$ ohm $1 / 2$ watt resistor
$3300 \mathrm{ohm} 1 / 2$ watt resistor $11 \mathrm{meg}, 1 / 2$ watt resistor
$1000 \mathrm{ohm} 1 / 2$ watt resistors $1560 \mathrm{ohm} 1 / 2$ watt resistor
10 mfd .6 volt Argonne capacitors (electrotytic)
$2 \mathrm{mfd}, 25$ volt Argonne capacitor (electrolytle)
100 mfd .6 volt Argonne capacitors (electrolytic)
10 mfd .15 volt Aryonne capacitors (electrolytic)
100 mfd .15 volt Argonne capacitor (electrolytic)
6 mfd .15 volt Aroome capacitor (electrolytic)
2 mfd .6 volt Argonne capacitor (electrolytic)
.02 mid. disc ceramic capacitors
.25 mfd . 200 volt capacitor (Aerovax Aerolite P822)
.0033 mfd d disc ceramic capacitor
.1 mld . 200 volt capacitor
.0068 mifd. disc ceramic capacitor
.04 mifd. 200 volt capacitor (Aerovax micro-miniature P832)
rubber grommet for $1 / \mathrm{m}^{\prime \prime}$ hole.
1 pc half-hard alloy sheet aluminum about $.040^{\prime \prime} \times 7^{\prime \prime} \times 41 / 2^{\prime \prime}$ (bend to make chassis)
l DC half-hard alloy sheet aluminum about $.030-035 \times 3^{\prime \prime} \times 3 / 4^{\prime \prime}$ (bend to make battery clip)
18 round head 4.40 machine strews $1 / 4^{\prime \prime}$ long
18 4-40 hex nuts
plastic covered hook-up wire about 24 gage (stranded); small spaghetti tubing
Kit \#KT117 for building the Hi.Fl Preamplifier can be obtained from Lafayette Radio, 165-08 Liberty Ave., Jamaica 33, N. Y., for $\$ 18.45$.

A good first test can be made with a microphone and amplifier, together with a speaker. The unit shows excellent gain over results obtained by plugging the mike directly into the amplifier. For phonograph use, simply plug a magnetic cartridge into the input jack instead of the mike. A selection of either high or low impedance jacks with a high-low switch allows the best matching conditions. Connections between the mike or phono cartridge as well as between the preamplifier and the power amplifier should be made with shielded cable to avoid picking up hum. The method of installing these phono plugs to cable is shown in Fig. 7C.

## Buttoning Up Earphones

- In order to protect the thin metal diaphragm inside an earphone which has a single large opening in the cap, cement a button over the opening with Duco cement. Sound waves readily pass through the small openings in the button but

the diaphragm is protected from damage by sharp objects when phones are stored or transported. The button also provides a better earseal between the cap opening and the eardrum. -A. Trauffer.

"Junior! Come down from there this very minutel"


Decade resistance box in use in radio servicing job. Various values of resistance are being applied across terminals where a defective resistor was formeriy soldered, and which is now unidentifiable due to extreme heating.

Ten ohms to ten megohms instantly available for test or experimental work with this handy, portable unit

PROVIDING 51 different standard 1-watt resistors for instant circuit insertion by means of three 17 -point rotary switches and plug-in leads, this decade resistance box is ideal for substitution use in the case of defective or suspect resistors in existing circuits, or as a test selection of values for new circuits. Its application in radio and television service work is obvious, and for experimental work-especially with transistor circuits where the amount of resistance used is often critical-its use is almost a necessity.
The 51 resistors in the unit described in this article range from 10 to 470 ohms, ${ }^{\prime} 560$ to 12,000 ohms, and from 15,000 ohms to 10 megohms; all of $10 \%$ tolerance. Resistors of other values can be used to make up a different set of ranges if desired, and $5 \%$ or $1 \%$ tolerance resistors can be used where greater accuracy is demanded (and cost is no concern), but the values indicated here will usually be found to encompass all those needed for ordinary servicing or experimenting.
The red plug-in jack on the top panel of the Bakelite case housing the unit is common; the other three jacks (A, B, C in Fig. 2) tap off from the individual switches. With the leads plugged in the common and A, you can use all the resistors in the first group ( 10 to 470 ohms) ; changing the second lead to the B jack, you get the second group, 560 to 12,000 ohms; to the C jack, 15,000 ohms to 10 megohms.
Dial plates numbered from 1 to 17 are provided at each switch and a chart cemented to the bottom of the case identifies each resistor value. (The bottom is the only location on the case where a space large enough for the chart is
nals at one end, for fitting in termicircular common terminal at the other. (Ohmite or Allen Bradley 1-watt resistors should be used because of their comparatively short length. Some other makes are much longer and their use may result in a fitting problem within the case.)

Pass the looped ends of the resistors through the switch terminal holes from the back side so that the loops at the other ends will be turned out. Press them down tightly with pliers and

| DECADE RESISTANCE BOX CHART |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| 1 | 10 | 1 | 560 | 1 | 15k |
| 2 | 12 | 2 | 680 | 2 | 22 K |
| 3 | 15 | 3 | 820 | 3 | 33 K |
| 4 | 18 | 4 | 1000 | 4 | 47 K |
| 5 | 22 | 5 | 1200 | 5 | 68K |
| 6 | 27 | 6 | 1500 | 6 | 100K |
| 7 | 33 | 7 | 1800 | 7 | 150 K |
| 8 | 47 | 8 | 2200 | 8 | 220K |
| 9 | 56 | 9 | 2700 | 9 | 330 K |
| 10 | 68 | 10 | 3300 | 10 | 47 OK |
| 11 | 82 | 11 | 3900 | 11 | 680 K |
| 12 | 100 | 12 | 4700 | 12 | 1.0 M |
| 13 | 150 | 13 | 5600 | 13 | 1.5 M |
| 14 | 220 | 14 | 6800 | 14 | 2.2 M |
| 15 | 270 | 15 | 8200 | 15 | 3.3 M |
| 16 | 330 | 16 | 10K | 16 | 4.7 M |
| 17 | 470 | 17 | 12K | 17 | 10 M |
| $K=1000$ ohms |  |  | $M=$ megohms |  |  |


solder (Fig. 3B). As shown in Fig. 2, the \#1 terminal is at the right side of the wide spacing on the switch contacts.

The lowest value resistor for each group of resistors goes to the \#1 terminal, values advance counter-clockwise (as viewed from the back). Measure each resistor with a reliable
ohmmeter before installing it to make sure that the marked value is accurate to within plus or minus $10 \%$ of its markings. When, as occasionally will happen, a resistor is found that is inaccurately marked, substitute another. (If $5 \%$ or $1 \%$ resistors are used, testing is not necessary. If you are unfamiliar with resistor color coding, an IRC Re-sist-O-Guide can be obtained for $15 \$$ from any electronics supply store.)

With all resistors soldered to the switches, prepare the Bakelite top panel (Fig. 4)). This piece of black Bakelite can be a part of an old $1 / 8-i n$. radio panel or you can send to Forest Products Co., 131 Portland Street, Cambridge, Mass., which will supply one cut approximately to size for $\$ 1.15$ post-paid (send money order or check). Corner holes are


Shape resistor leads around two nails driven in a block of wood to get them of uniform length and with unlform loops (A); then, starting with terminal \#l on each switch with the lowest value resistor, position looped ends of resistors and solder at each terminal (B).


With the resistor-equipped switches attached to the panel, attach tormed rings of bare copper wire to tree loops, beading them down uniformly over the ring (C); and after the three rings have been placed and leads connected as shown, solder all points of contact to the rings (D).

DECADE RESISTANCE BOX—MATERIALS LIST
1 Bakelite case $21 / 4 \times 51 / 4 \times 63 / 4$ (MS 218)
4' \#18 test lead wire
3 17-position switches (Mallory 31117J)
2 banana plugs (MS 209-black)
3 dial plates (Mallory \#467, marked 1-17)
2 insulated alligatór lest elips (black)
3 binding posts (Superior DF30BC-black)
1 binding post (Superior DF30RC-red)
1-watt earbon resistor, $10 \%$ tolerance. Ohmite
or Allen Bradiey-
One of each of the following

| 10 ohms | 560 ohms | 15,000 ohms |
| :--- | ---: | ---: |
| 12 ohms | 680 ohms | 22,000 ohms |
| 15 ohms | 820 ohms | 33,000 ohms |
| 18 ohms | 1000 ohms | 47,000 ohms |
| 22 ohms | 1200 ohms | 68,000 ohms |
| 27 ohms | 1500 ohms | 100,000 ohms |
| 33 ohms | 1800 ohms | 150,000 ohms |
| 47 ohms | 2200 ohms | 220,000 ohms |
| 56 ohms | 2700 ohms | 330,000 ohms |
| 68 ohms | 3300 ohms | 470,000 ohms |
| 82 ohms | 3900 ohms | 680,000 ohms |
| 100 ohms | 4700 ohms | 1.0 megohm |
| 150 ohms | 5600 ohms | 1.5 megohms |
| 220 ohms | 6800 ohms | 2.2 megohms |
| 270 ohms | 8200 ohms | 3.3 megohms |
| 330 ohms | 10,000 ohms | 4.7 mejohms |
| 470 ohms | 12,000 ohms | 10 megohms |

All of the above material can be obtained from Lafayette Radio, 165.08 Liberty Avenue, Jamaica 33, N. Y. or in New England from their branch at 110 Federal Street, Boston, Mass.
1 piece Bakelite $1 / 8 \times 5 \times 61 / 2^{\prime \prime}$
$2^{\prime}$ of \#16 plastic insulated stranded hook-up wire; $15^{\prime \prime}$ of bare \# 14 copper wire; four 4.40 machine screws $3 / 8^{\prime \prime}$ long, binder head plated screws preferred

for 4-40 machine screws; the four Superior combination binding posts require $1 / 2$-in. dia. holes; the switches, $3 / 8$-in. dia. holes. Holes should be made with a twist drill ground as shown in Fig. 4B; regular ground twist drills have a tendency to tear such Bakelite.
Switches come equipped with a round plate having a pin that may be used as a stop. Since all 17 switch contacts are needed for this unit, discard this stop. Cut off the shaft at the first


Back of the completely wired unit is shown in A. Use \#16 insulated wire from the binding posts and also between the ring terminals.
marked point and install, using a washer on each side of the panel, applying cement (such as coil dope) to the lower washer to keep the switch from turning and to keep the dial plate, top washer and nut clamp assembly tight. Then install knobs.

The next step is fitting wire rings to the looped ends of the resistor leads and bending them over tightly with pliers (Fig. 3C). Form the rings from bare copper wire (about \#14


Attach the completed panel to the Bakelite meter case, using 4.40 screws at the four corner holes (B). It fits fush is recess of case.


Completed job shows the lettering that was put on with decals sold lor the purpose. After decals have thoroughly dried, apply a thin coat of clear plastic with a small brush to make them permanent. Banana plugs and clips soldered to short tlexible leads make connections quick and easy.
gage), leaving open ends at the wide-spaced switch contacts. Then connect flexible insulated leads from ring to ring to join them as a common terminal for all resistors and run a lead from one
of the rings to the red binding post. Use \#16 wire (negligible resistance itself) for these connections (see Fig. 3D). Finally, run a length of \#16 wire from each black binding post to the arm contact of the switch it is controlled by (see Fig. 5A).

Banana plugs and alligator clips soldered to short lengths of rubber-insulated, extra-flexible, \#18 test lead wire make convenient connections between the binding post jacks and the points on the circuit under test. Switches are marked $A, B$ and $C$, and the binding posts to which each switch is connected are similarly marked for quick identification. You can do this with a fine brush and white paint or use decals as supplied by electronic stores for such work.

The decade resistance box can also be used with the leads plugged into either $A$ and $B$ jacks or $B$ and $C$, putting the banks of resistors in the two groups used in series for special test cases. Where standard RETMA values only are of interest, however, the leads are used with one in the common and the other shifted to either $A$, B or C post jack.


## TV PIX-O-GRAM

Do you have a moment to spare? Try your luck working this puzzle. Identify the objects shown on the screen and write their names in
the spaces provided below. Time yourself, and see if you can work this one in three minutes or less. Answers on p. 142.


Powerful unit fits the coat pocket as easily as is separates local stations slearly when plugged into earpiese, phones or speaker.

○NCE you have built and enjoyed a true superheterodyne radio such as that in Figs. 1 and 2 you will never be satisfied with any other AM type. Tops in sensitivity and selectivity, it is no wonder that this circuit is used in practically all commercial radios.

## Transistorized Pocket Superhet

## Here's a challenging and rewarding project for the experimenter who has passed the beginner's stage

By Harold P. STRAND

Superhets are generally considered complex, so if you are a beginner it may be wise to gain some electronic experience by building one or more of the simpler tuned radio frequency receivers featured in this and previous issues of Radio-TV Experimenter. You will thus become familiar with basic circuit and parts layout which will help you construct a receiver of greater complexity and higher performance.

One advantage of the superhet is that all incoming signals are changed into a single fixed frequency and amplified at this new frequency. This aids uniform amplification and selectivity over a broad range of frequencies. Also, there is less danger of feedback troubles at the lower frequency, which allows greater amplification with high stability.

Four transistors and a diode are used in the circuit (Fig. 6), which is about as simple as you can expect in a superhet. A resistance/ capacity-coupled audio amplifier provides more than adequate earphone volume or will


Side of plastic case is actually top of the set ${ }_{f}$ where all controls are located for convenient operation.


Held firmly in a bench vise, the perforated Bakelite board is easily drilled and cut to shape desired.
operate a speaker on strong local stations. A 9 -volt battery powers the set. Parts needed will cost about $\$ 23$.

Begin Construction by cutting the perforated Bakelite board down to size $3 \not / 10 \times 4$ in. so it will fit loosely in the box. Bend up a $21 / 8 \times 39 / 18$-in. piece of aluminum sheet into a support bracket as in Fig. 5. Attach it to the board as in Figs. 4A and 5, using two \#4-40 screws and nuts with \#10 nuts in between as spacers.

Mark openings for the transistor sockets and the IF transformers with a sharp scriber, then drill some small holes within the areas.

Break out the holes with small diagonal pliers, then dress the sides square with a small flat file for a snug fit as in Fig. 3.
Shafts on the tuning condenser and volume control must be cut before mounting. Clamp the end of the condenser shaft in a vise and make a square cut with a fine-tooth hacksaw at a point $\% / 32 \mathrm{in}$. from the raised bushing of the condenser's plastic case. Dress the end with a file and slightly ream the center hole so the screw retainer will start easily. Cut the volume control shaft at a point $3 / 8 \mathrm{in}$. from the end of the threaded nose.

You can now mount these units and the phone jack on the bracket as in Fig. 3. Also mount two fuse clips (see Materials List) on the board for the antenna coil as in Fig. 3. Straighten out ends of the clips, originally intended to be stops, so that a curved surface is provided along their entire length to clamp the coil at the extreme ends.

Press the IF transformers in their openings as in Fig. 4B. Bend the tabs provided over sharply at the other side, taking care to avoid distorting the terminals. They should be placed so that the brown dot seen at the underside is away from end with the bracket.

Make the battery holder as in Fig. 8A. Snap-on terminals on this battery make it impossible to get a wrong polarity when changing it.

Figure 4A shows where to place a terminal lug on top of the board under one of the battery clip retaining nuts. This will be used for the positive side of the battery circuit. It also shows how to locate the transistor sockets and bend over the terminals to lessen the space


Leff, underside of board showing socket and IF transformer terminals prior to wiring. Right, major components mounted on top of board. Spring clip holds battery; fuse clips the antenna coil.
they occupy, as well as to simplify connections. Bore a hole through the board just below the aluminum bracket (Fig. 4A) and ream it out for a tight fit with the end of the oscillator coil. Turn this coil so that the green dot terminal is located as in Fig. 7.

Install flea clip terminals as needed in holes located from the pictorial diagram. They serve as tie points and can go anywhere on the board where wire or lead grouping indicates a terminal. Press them tightly in holes with long-nose pliers which rest against side stops to gain sufficient pressure. Don't oversqueeze.

Start the Wiring, after all parts are in place, as in Figs. 6 and 7. Reduce length of antenna coil leads somewhat for neater connections to their respective points. After cutting these stranded wires, remoye enough enamel coating at cut ends by rubbing with fine sandpaper to prepare them for soldering. Twist the fine wires together to form a cable. Solder to terminals indicated.

The oscillator coil is marked from 1 to 5 , with the green dot being \#1. Tie points are provided at the left of the coil for a 27 K resistor, $.01-\mathrm{mfd}$ capacitor, and the 100 K resistor used around the coil. Make sure each connection is at the correct numbered terminal and use only rosin core solder. Connect tuning capacitor, volume control, and jack.

Place a terminal clip under the \#5 oscillator terminal (D in Fig. 7) and connect a short wire to this clip. The part of the clip projecting underneath the board is a common negative point for connections of other wires and leads. To receive this negative link, connect a 2 -mfd, 15 -volt capacitor from the middle terminal of the volume control to another terminal clip located just under the 27 K resistor (B in Fig. 7). Then, on the underside of the board, link terminals B and D with a 220 K resistor.


If you find it difficult to solder many wires at one point, add another flea clip nearby and hook it up with a short jumper.

Keep underside wiring neat and parts flat against the board as in Fig. 9A to conserve space. Use \#24 or \#26 plastic-covered, tinned, solid hookup wire. Observe polarity on all electrolytic capacitors as in Figs. 7 and 8.

Use stranded wire at the battery connections for flexibility at the snap-on terminals, being sure to get the plus and minus sides right. Use a piece of bare solid wire (hookup wire with insulation removed will do) as a common positive line (Fig. 7). Soldering leads for the plus side of the circuit to this wire helps to keep the wiring compact. Also solder this wire to the two IF cans at their turned-over tabs to ground them. Note that one terminal at each IF transformer is not used.

Now prepare the transistors by cutting off their leads to about $7 / 16 \mathrm{in}$. and install them in sockets as in Fig. 7.

How to Align the Receiver. The lining-up process (Fig. 10) is necessary in all superheterodynes. First, adjust the slug in the oscillator coil until it is about $41 / 2$ turns inside the bottom of the coil form. Adjust trimmer marked OSC at the back of the tuning capacitor until half of its rotor is meshed with the stator or stationary plate. Adjust antenna trimmer (marked ANT) until three-fourths of its rotor meshes with the stator.

An insulated rod with a screwdriver end is


a good tool for these adjustments. You can make one out of Bakelite rod, or other stiff plastic, about $7 / 2-$ in. dia. File the screw-driver edge in one end.

Plug in the phones, turn on the switch, and advance the volume control about three-quarters of the way. Set the tuning dial around 1600 kc (160) and turn slowly until you pick up a station near this top end of the dial. Identify the station from the announcer or a newspaper listing and note if it comes in approximately at the correct dial position. If not, set the station number correctly on the dial and then adjust the oscillator trimmer (slug) of the tuning capacitor until you get maximum volume and clarity. Then adjust the antenna trimmer for best reception.

Try a station at the opposite end of the dial (around 55 ) and repeat the adjusting process up to the antenna trimmer stage. Should the stations come in correctly, simply adjust the antenna trimmer for maximum volume for a station at the high frequency end and the oscillator slug for a station at the low end.


8 A shapmg tue battery holocr
DRILL AND C'SINK hOLES IN 20 mUT LOCXS Chassis to case


Now tune in the weakest station at the high frequency end and again adjust the antenna trimmer for maximum volume. A slight adjustment may be required at the IF transformers, using the same tool through a small opening to turn the slug. These transformers come factory-set for 455 kc , so it is well to avoid a change unless necessary. Move the slugs slightly in either direction if peaking seems advisable. The various adjustments described have an effect on one another, so it is sometimes necessary to go over the steps a second time.
You'll find the antenna coil is somewhat directional. For maximum volume and clarity, move the unit to a position in which the coil points toward the station. Try this for each


For a good wiring job, keep capacitors and resistors close to board and use spaghetti tubing an leads crossing bare leads or terminals to ovaid shorts. Right, transistors shown in sockets on top of board where wiring is limited.


Listening in on an antenna frimmer adjustment, ane of several steps in oligning the set.
plicated, a radio technician will align it for you with a signal generator.

If No Signals Can Be Heard, carefully recheck the parts against the diagrams and photos. You may discover a missed or wrong connection. While unlikely, one of the coils may be open. The diode or a transistor may be inserted wrong or be defective. Substitute another diode as a test, if necessary, noting how the end with the straight bar (cathode) connects in the circuit. To check transistors, a tester is required. One like that described in this issue (p. 106) should be part of every transistor experimenter's lab.


Two spacers cut from pipe are cemented to back of case to hold board in proper position.


Optional speoker requires output transformer for corrett impedance match to the 3.2 -ohm vaice cail.

Preparing the Case. Once the chassis is adjusted, the next step is to finish the clear plastic case. We applied two coats of a dark maroon enamel to the inside surface only, using a small brush and smooth, even strokes.

After the enamel dries, add a coat of flat black paint to the inside surface. When dry, this will give a more suitable inside finish, while the maroon will show through to the outside to give a professional, Bakelite-type appearance.

When the finish is complete, locate and mark holes for the tuning capacitor volume control, and jack at one end of the case as in Fig. 11A. Also locate two countersunk holes in back for screws to hold the chassis. To avoid cracking the material, drill small holes carefully and then hand-ream them to size.

To hold the board at proper level in the
case, cut two spacers about 11/32 in. long from any small pipe or similar hollow material. Install them over the holes in the back of the case as in Fig. 11A and B, using a dab of paint to "cement" them in place.

Insert the tuning capacitor and volume control in their drilled holes as in Fig. 8B, using a second nut on the latter to lock the chassis to the case end. The jack will just protrude through its hole. Attach volume control knob and tuning dial to their shafts, then secure lower end of the chassis to the spacers through holes at the back, using \#4-40 fh screws and nuts.

Operating Tips. You can use a 2000 -ohm headset or a single earpiece having about the same resistance value, as in Fig. 2. Crystal earphones are not satisfactory.

Figure 12 shows how to use a speaker for local reception of most strong stations. Mount a $5-\mathrm{in}$. PM speaker on a piece of composition board and fit the board in an enclosure known as a wall. We found reception surprisingly good for a radio designed primarily for earphones.

Behind the speaker in Fig. 12 is a matching transformer (Argonne AR-138) serving as the output transformer. Connect long leads equipped with a plug to the jack of the radio unit, the shorter pair of leads to the speaker terminals. Don't use the red lead center tap.

Transistorized circuits sometimes have a distortion problem, especially at high volume. In this particular circuit, experimenting with the value of the resistor at the base of the output transistor (Fig. 6) may help eliminate the trouble. Resistance between 100 K and 220 K will probably be best. Distortion may also be due to a defective transistor, or to position of the set. Move it to align the antenna coil with the station.

## Solution to TV Circuit Puzzle, p. 122



## LOOKING OVER NEW PRODUCTS

## New AM Car Radio Under $\$ 30$

A transistor-powered AM car radio retailing at only $\$ 29.95$ comprises the basic model in the 1962 Motorola line. Known as Model $250-\mathrm{X}$, it is available with choice of two face plates to fit in almost any domestic automobile with minimum installation difficulty. The set includes three tubes, two transistors, 4 -in. speaker with automatic volume control, noise interference rejection and 3 microvolts of sensitivity.

All other AM car radios in the new line have a fully-transistorized chassis, beginning with a manual model 320 T featuring tone control, reverse polarity, chrome knobs and distinctive dial treatment for $\$ 39.95$.

A deluxe manual set, model 2 MT has a separate tone control, $5 \times 7-\mathrm{in}$. speaker, adjustable shaft centers for a custom installa-

## Hi-Fi Speaker System

Unusually smooth response within $\pm 2 \mathrm{db}$ from 45 to 17,500 cycles per second is reported from the three-speaker Ravinia system. The unit comprises a $12-\mathrm{in}$. compliance woofer, an $8-\mathrm{in}$. cone midrange speaker with sealed fiber glass-fill backplate, and a $21 / 2-\mathrm{in}$. ring radiator supertweeter with a similar backplate.
Cross over points are 600 and $3,500 \mathrm{cps}$ with db/octave attenuation. Level controls are provided for optimum midrange and tweeter balance under all room conditions.

Contemporary cabinet is $261 / 4 \mathrm{in}$. wide, $131 / 4$ in. deep and 15 in . high. Model SR 3-W in hand-rubbed walnut is priced at $\$ 139.50$; model SR 3-B in unfinished hardwood ready for stain or paint, $\$ 129.50$, and model SR 3-U

tion, and a 6-transistor push-pull chassis delivering 12 watts of instantaneous peak power which is said to be three times above average. Priced at $\$ 51.95$ including installation kit.Available through Motorola dealers.

in utility finish, $\$ 119.50$.-Sherwood Electronic Laboratories, Inc., 4300 N . California Ave., Chicago 18, Ill.

## Stereo Multiplex Adapter

For an economical way to receive the new FM stereo broadcasts, the Realistic line has introduced a multiplex adapter designed to match with its present monaural FM tuners simply by connecting one wire to the multiplex jack and two wires to the amplifier.

A selector switch and stereo balance control connected with two pilot lights indicate when power is on and when station being received is broadcasting stereo. Adapter has frequency response of 3 db in range of 50 to 15,000 cycles per second; hum and noise, 60 db ; crosstalk, 20 db at 1 kc . Unit measures $73 / 4 \times 43 / 8 \times 6 \mathrm{in}$. and sells at $\$ 39.95$ completely

## LOOKING OVER NEW PRODUCTS

## Low-Cost FM Stereo Adapter Kił

Owners of stereo music systems may receive the new stereo broadcasts economically with the new Knight-Kit Adapter KS-10 which can be used with any FM or AM-FM tuner equipped with a multiplex output.
The power cord of the adapter unit is plugged into the switched ac outlet on amplifier or tuner, so that it will turn on and off automatically. It has its own on/off switch, noise filter, and separation controls. The unit, measuring $37 / 8 \times 81 / 2 \times 4 \mathrm{in}$., may be installed out of sight.
Priced at $\$ 19.95$, the multiplex adapter kit includes three $36-\mathrm{in}$. cables for input and output hookup, metal case, tubes, all neces-

## FM Multiplex Tuner

Drift-free performance without AFC and complete elimination of inter-station noise are credited to the Realistic TM-214 tuner for stereo FM multiplex reception, now available in kit or wired form. Tuner contains 11 tubes plus rectifier and matched germanium diode detectors, has two audio and two tape outputs, three IF and three limiting stages to provide constant output and high-gain bandwidth control without distortion.

From a cold start, drift is held to $.02 \%$; calibration accuracy is rated at $.2 \%$. Signal-to-noise ratio is 70 db monaural or 50 db

sary parts, precut wire, solder, and step-bystep assembly instructions.-Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

stereo; AM suppression is 30 db with $2.8 u v$ into 3000 ohm antenna. Price of the kit is \$149.95; wired, \$189.95.-Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.


## LOOKING OVER NEW PRODUCTS

## Earphone Stereo

A self-contained stereo system designed for one to four persons using earphones is called the Pioneer Stereoscope Model SH-100. A simple air-pressure system activated by minute movements of the tone arm stylus creates the balanced stereophonic sound through earphone pipes connected directly to the tone arm, which may be attached to any current record player or turntable.

The system features a needle guard, tone arm rest, adjustable stylus pressure, and easily replaced needle. Use of additional pipes and adapters allow up to four persons to listen simultaneously. Complete system sells for $\$ 29.50$ and includes tone arm, cartridge, adapter, one set of earphones, two plastic tubes, suction cup base with metal

## Twin Speaker Cabinet

An 8 -in. woofer with a long-throw, highcompliance cone and a Spericon supertweeter mounted semi-coaxially with it and $1 / 2 \mathrm{in}$. off center to assure smooth speaker performance and wide high frequency dispersion make up the new Realistic "Solo 9" speaker system.
The unit has a frequency response range of 35 to 45,000 cycles per second, is offered with hand-rubbed, oiled walnut finish cabinet for $\$ 109.95$.-Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.

## Grid Dip Meter

Compact design of the Model TE-18 grid dip meter, with on-off and oscillator-diode switches on the front panel, permits its operation as a one-handed troubleshooter. In addition to acting as a grid dip oscillator to determine resonant frequencies of tuned circuits, it will also serve as a signal generator, absorption wave meter, field strength meter or oscillating detector.

It covers frequencies of 360 kc to 220 mc in eight calibrated ranges. Coils are lettercoded and marked in megacycles by frequency range.
The unit has planetary drive tuning mechanism with $4: 1$ reduction gears, grid current meter with $500-u a$ movement, uses a 6AF4A tube, and measures $2 \times 23 / 4 \times 71 / 4 \mathrm{in}$. It is priced at \$24.95.-Lafayette Radio Electronics, 111 Jericho Turnpike, Syosset, N. Y.

hook, extension rubber tube reinforcements, controller, and screws.-Lafayette Radio Electronics, 111 Jericho Turnpike, Syosset, N. Y.


## LOOKING OVER NEW PRODUCTS

## Electronic Thermometer

An instant reading thermometer with an accuracy of $1 / 2^{\circ}$ at distances up to 1000 ft . away, if extra wire is used, is the new Realistic Novatherm model. The meter is designed to provide continuous readings, take readings of two different temperatures in two different locations, and traverse the extremes of dry ice to boiling in one second. Front switch selects either external or internal probe.

The $33 / 4 \times 41 / 2 \times 61 / 4$-in. unit is equipped with $1 \%$ resistors and four adjustment potentiometers for accuracy in calibration. It is available as a kit for $\$ 19.95$, or completely wired for $\$ 29.95$.

The thermometer can be used in darkrooms, children's rooms, refrigerators, freezers, tropical fish aquariums and cooking applications. It can also "take" children's temperatures and monitor the temperature in

## Sound-Powered Phones

The call-to-answer problem which has plagued sound-powered telephones since they were introduced early in World War II has been eliminated. New models have a tran-sistor-powered 1,000 -cycle oscillator connected across the two communicating wires.

Press of a pushbutton switch sends a clear, 1,000 -cycle note on both wires without harming the phones, which are capable of handling speech for distances up to 25 miles without battery power.-Distributed by Blan the Radio Man Inc., 64 Dey St., New York 7, N. Y.

## FM Car Radio Tuner

Designed for use with AM car radios featuring push-pull high fidelity output, the Model FMC-62 FM car radio tuner can be easily removed from one car and installed in another, to amortize its cost over several automobiles. Compact in size, the tuner has a front panel of simulated black leather framed in bright chrome.

Equipped with seven tubes, two limiters with its own RF stage, automatic gain control,

radio equipment.-Radio Shack Corp., 730 Commonwealth Ave., Boston 17, Mass.

and automatic frequency control, the set retails for $\$ 69.95$ at Motorola dealers.

## Answers to TV Pix-O-Gram on page 130

Top leff, IF Transformer. Top center, miniature fube. Top right, mast clamp.

Bottom left, capacitor mount.
Bottom center, fuse holder. Bottom right, minialure lube sockef.

## RF-AF Resonance-Frequency Meter

## A simple test accessory to increase the usefulness of your signal generator, VTVM, and oscilloscope



Determining resonant frequency of coil-condenser combination with VTVM at left and signal generator at right. Coil-condenser combinations may be connected to either set of terminals.

By W. F. GEPHART

SOME instruments are available for determining the frequency of resonant circuits, values required for resonance, and " Q " factor. Others determine the frequency of AF or RF signals, but few are versatile enough to fulfill all of these requirements. Most of these instruments are expensive and have greater accuracy than is necessary for typical experimenting.

The unit shown in Fig. 1 is easily constructed and costs $\$ 15$ or less, depending on whether you use new or surplus parts. When operated in conjunction with a signal generator and VTVM (or oscilloscope) as in Fig. 1 , the meter will:

1. Determine the resonant frequency of coil and condenser combinations at either AF or RF.
2. Indicate selectivity and peaking of a resonant circuit.
3. Measure crystal frequencies and give an indication of activity.
Accuracy of the unit will depend on the accuracy of the signal generator used with it, and on the care taken in making the tests. Its range will depend on components used and care taken in parts placement and wiring.
Variations Are Easy in both construction and components used, depending on the features you desire. The author enclosed his model in a $31 / 2 \times 6 \times 8-\mathrm{in}$. Minibox in which he fastened the variable capacitor to the top with ceramic insulators as in Fig. 5. However, if a vernier dial is wanted, you may find it more practical to use a regular cabinet and separate chassis.

The unit in Figs. 4 and 5 was designed primarily for audio and low radio frequen-

cies. At high radio frequencies, the internal capacity of the unit becomes important because of the low capacities. In such case, a smaller variable capacitor ( 100 or 140 mmfd ) should be used. In addition, you would have to minimize internal capacity by placing parts and controlling lead length in a more careful manner.
In the unit shown, internal capacity is about 38 mmfd when the three-position DPDT toggle switch (S2) is set at "None." This is too great for high radio frequencies. Much of this is due to the rotary switch (S1). For high frequencies, it might be better to eliminate this switch or substitute a ganged-type ceramic rotary switch with wide spacing.
Drill the front panel of the miniature cabinet as in Fig. 3, modifying where necessary



Calibration for variable capacitor is lettered on cabinet with India ink.
to accommodate any changes in components you propose to make.

Four Important Steps to remember in any case, before drilling, let alone mounting the parts, are:

1. Ceramic-type stand-off or feed-through insulators should be used for the capacitor and inductance terminals.
2. Switch S2 must be a low-capacity lever type.
3. Capacitor and conductance terminals, variable capacitor, and lever switch. must all be placed close together to minimize lead length.
4. The variable capacitor must be insulated from the cabinet and should be of the "mid-line" type, in which capacity varies directly with rotation. This simplifies calibration if you mark off the $180^{\circ}$ scale in equal segments between the minimum and maximum capacity of the unit.
Minimum capacity in Step 4 is 25 mmfd , and the maximum, 385 mmfd ; the difference being 360 mmfd . Dividing this by $180^{\circ}$ means that each scale degree equals 2 mmfd . Since there are $5^{\circ}$ segments on the scale, each segment equals 10 mmfd . For more precise tuning, a vernier dial such as National MCN can be used.


Neat parts ossembly is importont to the success of the project. Keep wiring short and direct.

The Determining Circuit used for resonant frequency is shown in simplified form in Fig. 6 A . Capacitance and inductance are connected in parallel and this combination is connected in series with a load resistor (R1).

Now connect a signal generator across the resonant circuit-load resistor combination and a VTVM across the load resistor alone. Output of the generator, fed through this generator, is monitored by the VTVM.

At the resonant frequency of the coil-condenser combination, the high impedance of the parallel LC circuit causes a drop in the voltage across the load resistor, which is shown on the meter. Amount of voltage drop is an indication of the " $Q$ " of the circuit. The frequency range over which there is some voltage drop indicates the selectivity of the circuit.

By using an audio oscillator (instead of a signal generator) and iron-core inductances, resonant audio frequencies can also be determined.
Where an external coil and condenser are involved, make these tests with switch S2 turned to the "None" designation. If you have a coil and want to know what capacitance is required for resonance at a given frequency, set this switch at RF or AF, and set the signal generator for the desired fre-

quency, with only the coil connected to the terminals.

Now, with S2 on RF, tune the calibrated variable capacitor (C3) until the VTVM reading drops, indicating resonance. You can then read the capacity required on the C 3 scale. If C3 does not have sufficient capacitance, connect additional fixed capacitors from the capacitor terminals to "pad" C3. The value required would be the sum of the external capacitor and the indicated reading on the C3 dial.

After turning switch S2 to AF, you can cut into the circuit any one or combination of the internal fixed condensers by switches S3 through S12. Start with high capacities and work down. By switching in the capacitors one by one and tuning the audio oscillator on both sides of the desired frequency, you can determine an approximate internal capacity.
In this procedure, if the resonant frequency (with a specific internal capacity in the circuit) is below the desired frequency, too much capacity is involved; if the frequency is too high, too little capacity is being used. After making an approximation, you can determine the exact value by adding small amounts of capacitance externally to the capacitor terminals.

To Test Crystals, try the simple circuit shown in Fig. 6B. In this the crystal is substituted for the resonant circuit but, due to its low impedance at resonance, the VTVM reading suddenly increases at the resonant

frequency. The amount of rise in voltage gives an indication as to the activity of the crystal. Its harmonic content can also be checked by tuning the signal generator to the crystal's harmonic frequencies.

Tuning required in the crystal test is extremely sharp. It is virtually impossible to determine the frequency of an unknown crystal. Even when the frequency is known, it is easy to pass the peak unless care is taken in tuning the signal generator.

Unknown Frequencies are determined by "beating" them against a known frequency, as in Fig. 6C. Connect both the test signal and signal generator across the load resistor, then tune the signal generator through its range.

With RF signals, when the generator frequency equals that of the test signal, the two will lock in phase, reinforce each other, and the output will increase sharply.
With AF signals, the VTVM needle will start quivering, then oscillate, just before the two signals reach the same frequency. The oscillations will slow down and stop when the two frequencies are exactly equal, only to start again as the exact frequency is passed.

In the Case of RF Signals, an oscilloscope is a better indicator than a VTVM because of the locking of the two signals. Connect the vertical input to the VTVM terminals of the unit, and a complex wave pattern will be shown when off-frequency. When the two frequencies are equal, a good sine wave pattern will result (if both inputs are sine

| Desig. | MATERIALS LIST—RF-AF METER Description |
| :---: | :---: |
| R1 | 5 |
| C1, C2 | . $005 \mathrm{mfd}, 50$ volt capacitors |
| C3 | $\mathbf{2 5 . 3 8 5} \mathrm{mmfd}$ variable capacitor with mid-line plates (see text) |
| C4 | . 0001 mm (d ( 100 mmfd ) mica or disk capacitor |
| C5 | . 0025 mmfd ( 250 mmid ) mica or disk capacitol |
| C6 | . 0005 mmid ( 500 mmid ) mica or disk canacitor |
| C7 | . 001 mmfd ( 1000 mmfd ) mica or disk capacitor |
| C8 | . 0025 mmfd ( 2500 mmid ) mica or disk capacitor |
| C9 | . 005 mmfd ( 500 mmfd ) mica or disk capacitor |
| C10 | . 01 mmfd mica disk or ceramic capacitor |
| C11 | , 025 mmfd ceramic caspacitor |
| C12 | . 05 mmfd ceramic capacitor |
| C13 | . 1 mmfd ceramic capacitor |
| 01 | 1N34, 1N48, etc., diode |
| J | 0 0pen tircuit jack |
| S1 | 5-pole 3 position rotary switch (Mallory 3263J: see text) |
| S2 | DPDT 3-position lever (Switcheraft 3037L: see text) |
| 53-512 | SPST toogle switch |
| Misc. | Six binding posts, four ceramic stand-off or feed-through insulators, erystal socket. knobs, hookup wire |

waves) and the amplitude will be about twice that of the complex wave.

With AF signals (using an audio oscillator), the needle oscillation of the VTV'M will be more pronounced. Phones may be used for an audible check of the zero-beat note.

Due to the lack of a buffer amplifier in the unit, the two frequencies will tend to lock together as the generator frequency approaches that of the test signal. At audio frequencies, this effect is slight, but it does limit the exactness that can be achieved at radio frequencies.

In all three tests, you must be sure that indications are received at the fundamental frequency rather than a harmonic. If the approximate frequency involved is known, this is no problem. If not, you can determine it by working out this formula:

$$
\text { Fundamental Frequency }=\frac{F 1 \times F 2}{F 2-F 1}
$$

First make a test for the lowest frequency which gives an indication (meter dip on resonance test, peak on crystal test, beat-note on frequency comparison test). The lowest frequency will be F1.

Gradually increase the frequency of the generator until a second indication is noted, taking care not to pass the next frequency that gives an indication. That will be F2.

## Charged Plastic Dusts Platter

- If the grooves of your hi-fi phonograph records are filled with dust, here's how to remove it the harmless electrostatic way; Take a piece of Saran plastic wrap and crumple it in your fingers while holding it about an inch above the surface of the revolving platter. The static electricity produced by crumpling the plastic will attract the dust particles and hold them. If you watch very closely, you'll actually be able to see them jump from the platter to the charged wad of plastic.-J.A.C.

For Information on Classified ads-to be included in our next RADIO-TV EXPERIMENTER HANDBOOK and other Hondbooks-write C. D. Wilson, Manager, Classified Advertising,
SCIENCE and MECHANICS HANDBOOK DEPT., 505 Papk Avenue, New York

## AUTHOR'S SERVICE

PUBLISH your book! Joln our successul authors: publicity advertising romo tion, beautifu! books. All subjects frvited Send for free manuscript report and detalled booklet. Carlton Press, Dept. DGC 84 Fifth Avenue, New York City 11.

## AUTO TRAILERS \& SUPPLIES

BUILD Expanding elght foot traller, Accommodates five. Literature 104. FraMar Company, Wlimington, Mass.

BUSINESS OPPORTUNITIES
FREE Book " 990 Successful, LittleKnown Businesses." Work home! Plymouth511 W , Brooklyn \& i . Y .
SHARPEN Sans and Lawnmowers the prontable way, Send lor Free literature. Max Manufacturing Company, 138 Stockton
Avenue, San Jose 26 . Calif.

## BUY IT WHOLESALE

LOOKING for something??? Buyers $\begin{aligned} & \text { Service, } \\ & \text { IIInols. }\end{aligned} 9325-\mathrm{D}$ Mendard, Oak Lawn, Illinols.

## CAMERAS \& PHOTO SUPPLIES

AT last! Bulld your own supersensitive Lo mht meter from complete kit with easy to follow instructions. Uses newest cadmium sulfde light cell, shows ASA speeds .3 to 25,000 , F stops .7 to 80 measures accurately moonlight to bright sunlight. Mechanics, 505 KIt Division, Sclence and M. Y. Money 505 Park Ave., New York 22, returned within ten days for any reacon.
CARTOONING, COMMERCIAL ART $\%$ SIGN PAINTING
SURE! You can draw portraits of RelaLlves and Friends. Make money too with Corydon Snyder's "Art-Alds." Write for particulars or send him $\$ 1.00$ for complete profle set to 520 North Paulina St.,

## EDUCATION \& INSTRUCTION

LEARN Whlle Asleep with our recorder, phonograph or amazing new "Electronic Educator" endless tape recorder. Detalls free. Research Assoclation, Box 24-CC, Olympla, Washington

## ELECTRIC MOTORS

MOTORS: $1 / 4$ H.P. General Electrdc \$7.50. 32 H.P. Wagner $\$ 14.50$. Send Money Order, Rebullt Sizes to 5 H.P., List $10 c$. A.C. Motors, 3101 N. 32nd St., Philadel-
phia 32, Penna.

## ELECTRICAL EQUIPMENT \& SUPPLIES

MOTOR Repairing simplifed. Free detalls! Modern, Box 8715, Kansas City 14, Mlssour

COMPLETE kit with easy to follow in structions for bullding a high preciston all purpose tachometer. 3 ranges. Meas ures speeds on tape recorders. lathes, cutting tools, auto engines; model plane engines, many more uses. Ónly \$16.95. If not completely satisfied, kits may be returned within ten days for a complete refund. Kit Division. Sclence and Mechanles, 505 Park Ave., New York 22, New York.

## FISHING TACKLE BAIT \& LURES

FISH. Anlmal, Balts, Lures, Calls, Books. Catalogs 204 Myers, Lures.

## FOR INVENTORS

DESIGNING. Model making. Development work, Blueprints, write, M. Martin, Martindale, Pa.
SAVE High fees! Apply for your Patent yourself. New "Do-It-Yourself" Patent Kit now makes it easyl Free "RegistraCarry Bullding, Miss Susan Blain, 306 Carry Bullding, Washington 5, D.C.


Make your class/fied ad payl Th/s handbook tells how-whth examples; Ineluded Is a Credlf Certlficate worth $\$ 2.00$ toward the cost of a classified ad in 5 \& M . for a copy of "How to Wrife a Classified Ad That Pulls," send $\$ 1.00$ to Science and Mechanics, Dept, CDW-595, 505 Park Ave., New York 22, N. Y.

## GOVERNMENT SURPLUS

GOVERNMENT Surplus Avallable Lo cally. Goverament Publication. Send Airmall. 75e. Surplus, Box 36, Everetto Washington.

## HELP WANTED

TZOUSANDS of job openings, Nation-wide-Worldwlde, Box 12, Detrolt' 13, Mich.

## HYPNOTISM

HYPNOTIZE Self, Others while asteep With amazing hypnotic phonograph records, tapes Catalog free, Research Assoclation, Box 24-C, Olympla, Wash.
NEW concept teaches you sell-hypnosis quickly! Free literature. Smith-Mcxinley, Box 3038, San Bernardino, Calff.

## LEATHERCRAFT

AMAZING Flexilfe coating makes worn leather beautiful arain. All colors. Not a lacquer. Detalls and leather sample free. Modac, 216 Jackson, Chicago 6, Ill.
MAGIC TRICKS, JOKER NOVELTIES \& PUZZLES
2700 NOVELTIES, Tricks, Jokes, funmakers, hobbles. World's biggest gadget catalog 10¢. Johnson-Smith, D-522,

## MISSILES \& ROCKETS

ROCKETS Avallable Now: New 2-Stage Model Spacecraft! Kits, Cones, Engines, Chemicals. Blgger, 1962 Catalog 258, Central Rocket Company, Waupaca, WIs.

## MONEYMAKING OPPORTUNITIES

SECOND Income From Oll Can End Your Toll! Free Book and Ollield Maps! National Petroleum, Pan-American Bulld-ing-SM, Miaml 38, Fla.

## MUSIC \& MUSICAL INSTRUMENTS

PLAYER Plano rolls, parts, books, servShelby Drive, Cleveland 30 Rodgers, 16381

## PATENT SERVICE

PATENT Searches, including coples of nearest patents, $\$ 6.00$. Reports alrmatied within 48 hours. More than 200 registered patent attorneys have used my service. Free Invention protection forms. Write Washington Hastings, P. O. Box 176, ashington 4, D. C.
SAVE High lees! Apply lor your Patent yourself. New "Do-It-Yourself" Patent tion Forman Res susan RegistraCarry Bullding, Washington 5, D. C. 306
NO Letter to writel Special "Invention Fuyers. Tells them presents your idea to best way. Packages of they must know. Sclence and Mechanics $51 x$ lorms, $\$ 100$. slon, 505 Park Ave., New York 22, N. Y.

## PERSONAL

MEXICAN Legal Matters. A. Espeto, Boz 217-M, Tljuana, Mexico.

## PETS-DOGS, BIRDS, RABBITS,

 HAMSTERS, ETC.REGISTERED German Shepherd Pupples, older males, females shipped anywhere. George Gober, Jacksonville, Texas.

## PHOTO FINISHING, ETC.

A Firee Roll of Rodak Film with each developing and printing Guaranteed Qual ity send for iree mailers. Economy Photo Service, Dept. S, P. O. Box 1111, Albany, New York.

## PRINTING OUTFITS \& SUPPLIES

PRINTING Presses, Type, Supplles. List 4¢. Turnbaugh Service, Mechanics. burg. Pennsylvanag.

## RADIO \& TELEVISION

TROUBLE-SHOOTING Made Easy: Professional Electronic Techniclan Secrets Revealed, complete method $\$ 1.00$. Signature Publications, 3150 El Cajon, San Dlego 4, Calif.

CONBTRUCT a quallty FM Recelver. Challenge to Seasoned Experimenters. Also 26 new, exciting projects in "Radiopage "White's Radio Log" extra Send $\$ 1.00$ to Sclence and Mechanics, Handbook Division, 505 Park Ave., New York 22, New York.

## STAMP COLLECTING

1,000 DIFFERENT $\$ 1.00$ With approvals only. Alfred Jacobsen, Crompond, N. Y.
"'1962 PRICE LIst 132 pages-United States-United Nations-B. N. A. Price 304 . Deduction on $\$ 3.00$ purchase. Excellent Reference Booklet, 700 Illustrations." N. Rniffin, 1700 Harvard Street. Swissvale, Peansylvania.
FREE Triangles, Plctorlals, Others. 55 Different Coloriul, Low Priced Approvals. L. Baird, SM-1, Box 8128, Portland 7, Oregon.

## WELDING EQUIPMENT \& SUPPLIES

FREE Catalog, welders Kits. Bulld 350 ampere welder using aircraft generator,


## Introducing THE S \& M Handsook Library

HERE is a brand-new service available to readers of SCIENCE and MECHANICS and the S\&M Handbooks. Now, for a first time, you can order the S\&M Handbooks you want in advance of publication date land even be sure you'll receive your copies before the publication date!)
During 1962, S\&M will publish 30 Handbooks-the list and descriptions cover these two pages. By sending your order now, you can be sure you'll never miss the Handbooks you want. Each Handbook is $\$ 1$ land that covers postage and handling)-but better yet-you can have all 30 Handbooks for only $\$ 20 \ldots$ a full third off!
And, don't miss the four-issue subscription to four all-time favorite Handbookssee the bottom of the order coupon on the other page.

Order your Handbooks now-you'll be glad you did!

## S \& M HANDBOOKS - 1962

HOME APPLIANCE REPAIR (No, 590)-A how-to book covering repair and maintenance of the major home appliances: washer, dryer, woter heoter, furnaces, incinerotors, appliance motors, etc. Checks to moke before colling the servicemon. Publicallion date: January.
FURNITURE HANDBOOK (No. 591)-Step-by-step instructions to build furniture for every area around the home. More than 35 projects to build, plus procedures in upholstering, springing, clamping, joining and finishing. Publication date: January.
1001 HOW.TO.IDEAS (No. 592)-Crammed with time and money soving tips on malntenance of homes, cars, boats, plus practical kinks for the plumbing, electrical and radio-TV do-if-yourselfer. Speclal bonus price comparator slide rule offered in this Handbook. Publication date: February.
BOAT BUILDER'S HANDBOOK (No. 593)-New edition of this popular semi-annual offers a dozen completely detailed projects for small boots, including on 8 foot water scooter to be built in a day and a 9 foot paddle wheeler. Special discussion on refinishing plastls boals. Publication date: Fabruary.
SCIENCE FAIR PROSECTS including Science Experimenter (No. 594)-Here's an excifing new edition, offeping two dozen chal. lenging prolects of prize-winning caliber-iust in time for students to enter models in the 1962 science tairs. Publication date: March.
RADIO-TV EXPERIMENTER (No. 595)-Over 30 electronics projects for homs. DXers, short-wavers, sitizens' band users and other experimenters. Includes the complete White's Radio log of AM,

FM, TV and short wove stations with latest revisions. Publication dote: March.
CAR REPAIR HANDBOOK (No. 596)-A score of proctical servicing articles for the cor owner plus new developments in car repair tools and accessories. Mints on chongeover to summer driving. Publlea. lion dates April.
GARDEN HANDBOOK (No. 597)-A definitive Handbook for the home gardenep-with scores of tips and photographs. Best ideas for growing prize-winning flowers, frults and vegetables. Special section devoted to organic gardening. Publication date: April.
HOME REPAIR HANDBOOK (No. 598)-A Handbook for the home handymon who wants to save money by doing his awn repair and mointenance. Filled with valuable tips on plumblng, painting, glazing, carpentry and other repairs. Publication doter May.
CAMPING HANDBOOK (No. 599)-A Handbook for the actlve sportsmon-for both the first-1imer and the "pro." Dozens of tips and ideas on all types of equipment, accessorias, clothing, etc., for the outdoorsmon. Publication date: May.
INVENTOR'S HANDBOOK $(\mathbb{N} 0.600)$-Scores of articles, full of tips for the inventor. How to patent your inventions, where to sell them, how to sell ... plus discussions on cash sales, royalties, development, licensing, manufacturing, etc. Publlation dates June.
WATER SPORTS HANDBOOK (No. 6011-A primer on water sports of all kinds: skin diving, scuba diving, wafer skiing, surf board riding, water polo, swimming and other wator sports. More fun and more zest in the water. Publication dater dune.

ENGINE HANDBOOK (No 602)-A complete Handbook on en. gines of all kinds-for every type of mechanical-minded hobbyists and repairmen. Contains step-by-step defoiled instruction on re. pair, maintenance, conversions, funing, alterations. Publication date: Juiy.
HUNTING AND FISHING HANDBOOK (No. 6031-Fully illustrated Mandboak covering all phoses of these autdoor sports. Includes sections on equipment, accessories, elothing, plus dozens of tips and ideas. Publication date: July.
25 WHEEL PROJECTS (No. 604)-Defoiled plans for 25 hame projects, including such popular items as corts, traiters, roce cars, roll-away furniture, and others. This Hondbook is a must fop the active do-it-yourself craftsman. Publication date: July.
TOOL DIRECTORY (No. 605)-A definitive directory of workshop fools-hand and power-illustrating, describing and giving manufocturers for all the woodworking and most useful metolworking tools offered to the home craftsman. Publication dote: August.
SURPLUS PROJECTS HANDBOOK (No. 606)-More than iwo dozen best buys in surplus for 1962, over a scope of proctical projects to moke from bargain surplus purchases. Plus, a complete list of surplus dealers, including full mailing address. Publication dote: August.
BOAT BUILDER'S HANDBOOK (No. 607)-Detoiled projects for the small boal builder. Mare than a dezen plans that can be used af onse, including week-end projects os well as advansed plans calling for weeks of bullding. Plus ideas for preparing for the winter seosan. Publication date: August.
SCIENCE EXPERIMENTER including Selence Foip Projects (No. 608) - Dozens of science projects plus new developments in science, review of scientific books, informotion on careers in science. A must for the high schoal student-already a fovorite with his teacher. Publication dale: September.
RADIO-TV EXPERIMENTER (No. 609)-Almost three dozen proied articles for the electronics experimenter-expert and novice, plus informotion for the ham, short wove listener and DXer-plus expanded White's Rodio log, the complete AM/FM. TV and worldwide short-weve broadcasting. Publication date: September.
JUNIOR MECHANICS HAND8OOK (No. 610)-A. "must" for the youngster starting out. This Handboak is destined to become a
fovorite of school and trade school instructors throughoul the country. Publication dote: September.

HOME WORKSHOP HANDBOOK (No. 611)-A selection of the most popular how-to-do-it apticles for the home craftsman. Includes a wide variety of information on the use of power tools and how to build and use shop accessories: Publication date: October.

CAR REPAIR HANDBOOK (No. 612)-More than iwenty servicing articles for the owner, plus the newest in developments in cors, accessories. How to gel reody for winter driving. Publication dates October.
ELECTRICAL HANDBOOK INo. 6131-An indispensable guide for the amoteur and the do-lt.yourselfer, as well os every apartment and home dwaller. How to make minor electrical repairs, installa. fions, hints and ideas by the score. Publication date: October.
CERAMIC HANDBOOK (No 614)-A how-to-do-it Handbook show. ing scores of illustrations covering all phases of mokling ceromic projects. Covers, the gamut from the tiniest ashtrays to large table center-pieces. Publication dote: November.
HOME MODERNIZATION HANDBOOK INo. 6151-A hondy guide to modernizing home op apartment-inside and out. Covers all rooms of the house, garage, oftic and garden and potio. Also cantoins plons for the handymon. Publicallon dete: November.
NEW CARS 1963 (No. 6161 -A complete comparative study of all domastic and foreign new cars availoble in America in 1963-plus articles highlighting engineering and styling trends and up-to-the minute servising tips. Publlcation dote: November.

MAGIC HANDBOOK (No. 617)-Tips on how to perform the fomous tricks of fomous magicions-as well as sfop-by-step plans on constructing the necessory equipment. Excellent for the advanced maglaion as well as the beginner. Publication dater Decomber.
WOODWORKER'S ENCYCLOPEDIA (No. 618)-Fully illustroted Handbook thot is a must for every hondyman working with wood. Special sections on use of many types of tools. How-fo-do-it Instruc. tions for scores of different operations in the warkshop. Publica. fion dater December.
HOME BUILT POWER TOOLS (No. 619)-Step-by-step instructions for making power tools from salvage, surplus and/or inexpensive items found around the warkshop or supply stare. Fully illustrated, ioaded with diagrams. Publication date: December.

## USE THIS ORDER FORM - NOW!

S\&M Handbooks / 505 Park Avenue / New York 22, N. Y.
Please send me the S\&M Handbooks I have circled below. I understand that each Handbook is $\$ 1$ and covers postage and handling. All 30 Handbooks are specially priced at $\$ 20.00$.
$\square$ Send all 30 Handbooks, as published. I enclose $\$ 20.00$
$\square$ Send the Handbooks circled below-I enclose \$

| 590 | 596 | 602 | 608 | 614 |
| :--- | :--- | :--- | :--- | :--- |
| 591 | 597 | 603 | 609 | 615 |
| 592 | 598 | 604 | 610 | 616 |
| 593 | 599 | 605 | 611 | 617 |
| 594 | 600 | 606 | 612 | 618 |
| 595 | 601 | 607 | 613 | 619 |

In all cases, orders will be filled with current issues or future issues upon publication. Back issues will not be sent unless specified.

```
Enter my order for the following 4 -issue Subscriptions. Each subseription is \(\$ 3\) which is enclosed with this order.
```

Radio-TV Exparimenter $\square$ Science Experimenter \& Science Foir Projecls
$\square$ Boat Builder's HandbookCar Repair Handbook

Name
Address
City
Zone $\qquad$ State

## 



- Sports Cruiser
- Luxury Inboard Runabout
- Utility Runabout
- Single-Double Cockpit Runabout
- Racing Sailboat
- Outboard Runabout
- Class F Racing Hydro
- Water Motorscooter
- Paddle-Wheeler
- Duck Boat
- Runabout for Youngsters
- Sailing Catamaran
- Utility Outboard
- Trailer Craft
- Fishing Auto-Topper


## complete plans for 15 exciting BOATS

Pick up a copy at your newsstand or send $\$ 1.00$ including postage with coupon below

Science and Mechanics Magazine, Dept. 3000
Handbook Division
505 Park Avenue, New York 22, New York
Enclosed is $\$ 1.00$; please send me my copy of Boatbuilder's Handbook-593.

NAME
ADDRESS
city $\qquad$

## Plus Special

 Feature ArticlesFamily-Plan Competition for Boating Fans

Electric Powered Helmsman for your Boat

It's Time to Refinish Your Fiber Glass Boat

Anchoring Small Craft


Every offort has been made to ansure accuracy of the information listed in this publication, but absolute aceuracy is not guaranteed and, of course, only information available up to press-time could be included. Copyright 1962 by Science and Mechanics Publishing Co., a subsidiary of Davis Publications, Inci, 450 East Ohio St., Chieago 11 , III.

## QUICK REFERENCE INDEX

U.S. and Canadian AM Stations by Frequency. $\qquad$U.S. and Canadian AM Stationsby LocationAM Stations160
U.S. AM Stations by Call Letters ..... 169
Mexican and Cuban AM Stations ..... 177
U.S. FM Stations by States ..... 78
U.S. FM Stations by Call Letters ..... 180
Canadian FM Stations by Location ..... 183
U.S. Television Stations. ..... 183
Canadian Television Stations ..... 185
World-Wide Short-Wave Stations. ..... 185

## U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters

Kc. Wove Length W.P. 540-555.5

CBT Grand Falls, N.F. CBK Regina, Sask. KVIP Redding, Calif. WGTO Cypress Gardens. WDAK Columbus, Ga. KBRV Soda Sprinos, Idaho KWMT Ft. Dodoc, lowa WDMV Pocomoke City, Md. WBIC Islip, N.Y. WETC Wendeli-Zebulon, N.C WERO Canonsburg, Pa WYNN Florence, S.C WDXN Clarksvilfo, Tenn. WRIC Richlands, $V$ a,

## 550-545.1

CFNB Fredericton, N.B. CFBR Sudbury, Ont. CHLN Thros Rivers, Que. CKPG Prince George, B.C KENI Anehorafe. Alaska KOY Phoenixi Arlz. KAFY Bakersfold. Calif. KRAI Craig Col. WAYR Craig, Colo. WGGA Orange Park, Fla KMVA Gainesvilie. Ga, KFRM Concordia, Kansas WCBI Columbus. Miss. KSO St. Louis. Mo. KOPR Eutto Mont WGR Buffalo, N Y WOBM Statesville, N.C. KFYR Bismarek N.Oak. WKRC Cincinnatt. Onio KOAC Corvalils, Oreg. WHLM Bloomsliurg, Pa. WPAB Ponce, P.R. WXTR Pawtucket, R.I. KCRS Midland. Tex. KTSA San Antenlo, Tex. WDEV Waterbury, Vt WSVA Harrisonburg, $V$ KARI Blaino. Wash. WSAU Wausau, Wis

560-535.4
CJOC Dawson Creek, B.C. CJKL KIrkland Lake. Ont. CFOS Owen Sound. Ont. WOOF Dothan, Ala. KSFO sanma, Ariz. KSFO San Fran., Callf. KLZ Denver. Colo. WIAM Miami, Fla WMIK Middlesboro K WGAN Pordand boro. KY, WHYN Springield Mass WHYN Springfeld, Mass WEBC Ouluth. Min.

50000
1000d
10000

Kc.

## c. Wave Length

 KMON Great Fall, Mo. WGAI Elizabeth City, N.C. WFIL Philadelphla. Pa. Wis Columbla, S.C. WHBQ Memphis. Tenn KFDM Beaumont. Tex. KPQ Wenatchee, Wash. WILS Beekley. W.Va.570—526.0
CKEK Crantrook. B.C. CKCQ Quesnol, B.C CFCB Corner Brook, N.F CJEM Edmundston, N.B. WAAX Gadsdon, Ala. KCNO Alturas, Calif. WGMS Washlnotor. Call WGMS Washington, D.C WACL Waycross, Ga.

## KGRT Las Cruces, N. Mor

 WGAT Las Cruces, N. Mox. Whica New York, N.Y. W WYR Syracuse, N.Y. WWNC Ashevilio, N.C WSHE Raleigh, N.C. WKBN Youngstown. Ohio WNAX Yankton, S.Oa WFAA Dallas. Tox WBAP Ff. Worth. Tox KLUB Salt Lako City, Utah WMAM Marinotte. Wis.
## 58

CJFX Antigonish, N.S. CFRA Ottawa, Ont. CKEY Toronto, Ont. CKPR Ft. Whillam, Ont. CKUA Edmonton. Alta. CKY Winnipeg, Man. WABT Tuskageo, Ala. KTAN Tueson, Ariz. KMJ Fresno, Calif. KUBC Montrose, Colo. WOBO Orlando, Fla, WGAC Augusta, Ga. KFXO Nampa, Idaho WILL Urbana. JII, KSAC Manhattan, Kans. 5000 KALB Topeka, Kans, 1000 WTAG Woxandria, La, s000d WTAG Worcester. Mas 5000 d WELO Tupelo, Ailss.
1000 WAGR 1000 WAGR Lumberton, N.C 5000 WH W A Ashland, Oreg. 5000 WHP Harristurg. Pa. 5000 WKAQ San Juan. P.R. 5000 WRBK Hot Sprinos, S. Dak. 5000 KOAV Rubliock + Tonn 3000 KOAV Lubloek. tex.
500 d WCHS Charleston. W.V.
500 d
5000
WKHS Charleston WM, W.V.
WKCrosse, Wis,


Ke. Wove Length W.P KAVL Wove Length W.P. KAVL Lancaster. Calif. 1000

KFRC San Franelseo. Calif. 5000 WCKR Mlami, Fla. WCEH Hawkinsville. Ga. WRUS Russollville, Ky. KDAL Duluth, Minn. WDAF Kansas city, Mo. KOJM Havre. Mont. WGIR Manchester. N. KGGM Alluquerquo. N. $\quad 5000$ WAYS Charlotto, N.C. N. A ax. 5000 WTVN Columbus. Ohio WIP Philadelphla, Pa. KILT Houston, Tex. KVNU Logan, Utah WSLS Roanoke, Va. WHPL Winchester. Va. KEPR Kennewick, Wash. 500 d 620-483.6
CFCL Timmins, Ont CKCK Regina. Sask. KTAR Pho日nix, Ariz. KNGS Hanford, Callf.
KWSD Mt. Shasta, Calif KSTR Grand Junction Calio KSTR Grand Junction, Colo. 5000 d
WSUN St. Potersburg. Fla. 5000 WSUN St. Petersburg. Fla. $\quad 5000$
WTRP LaGrange, Ga. 1000 d KWAL Wallace, Idaho KMNS Sloux City, lowa WTMT Loulsville. Ky. WLBZ Bandor, Malne
WJOX Jaekson, Mlss. WJOX Jaekson, Mlss. WVNJ Newark, N.J. WHEN Syraeuse, N.Y WONC Ourham, N.C. WHJB Greensburg. Pa. WCAY Greensburg. WATE Knoxvilie. Tenn. KWFT Wiehita Falts. Tex WCAX Burlington, Vt. WTM」 Mllwaukee. Wis. $\quad 5000$

630-475.9
CFCO Chatham. Ont.
1000 CHLT Sherbrooke, Que. $\quad 5000$ CJET Smith Falls, Ont. 1000 CKRC Winnlpeg, Man. CKOV Kolowna, B.C. ck Pate River. Alta. AID Albertvilio. Ala. WJOB Thomasvilio. Ala K VMA Magnolia, Ark. K100 monterey. Callif. KHOW Denver, Colo. WMAL Washington: D.C. WSAV Savannah. Ga. WNEG Toceoa, Ga.
KIOO Bolse, idaho

WHITE'S RADIO $10 G$

| Kc. Wave Length | W.P. | Kc. Wave Length | W. | e | W.P. | Wave Length | W.P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lexinoton, Ky. | 5000 | KGNC Am | 10000 | KOSY Texarka | 0 | WEAT W. Palm Beach. |  |
| Thibodaux, La |  | KURV Edinburg. Tex | 250 | KDAN Eureka. | 5000 d | K1MO HIlO, Hawail | $100$ |
| Ironwood, M1 | 1000 | kiro Seattle, Wash. | 0000 | KABC Los Ange | 5000 5000 | WKDE Moston. Mass, | 5000 1000 |
| 8 So. St | 5000 |  |  | WFUN Mlami Beaeh, Fia. | 5000 | KFUO St. Louis. | 5000d |
| GVW Belgrade, | 10000 | 720-416.4 |  | WPFA Pensacola. | 1000d | WKIX | 10000 |
|  | 5000 |  |  | Waxl Atlanta, Ga. | 5000 | WJW Clovel | 10000 |
| LEA Lovington, N | 500 d | WGN Chitago. Ill. | 50000 | WGRA Calro. | 1000d | WEEU Readini Pa. | 1000 |
| IRC Hickory. N | 1000d |  |  | KEST Bolse. Idah | lo00d | WABA AO |  |
| MFD Wlimington. N.C. | 1000 | 730-410.7 |  | WRAS Beards town. I | 500 d | WRAP Nortolk. | 0 |
| WRO Coquille, | 5000 d | CJNR Bllind | 1000 | $\underset{\text { KXXX }}{ }$ Colby Kans. | 5000 d 5000 |  |  |
| EJL Scranton, | 1000d | CKAC Montreal, Quo. | 50000 | WRUM Rumford, M | $\begin{array}{r} 5000 \\ 1000 \mathrm{~d} \end{array}$ | 860-348.6 |  |
| RO Provident | 50 | CKDM Dauphln, Man. | 10000 | WSGW Saginaw, Mi | 5000 |  |  |
| GFX Plert |  | CKLG No. Vantouver. B.C. | 10000 | WSIC Magee, mlss. | 1000 d | CHAK | 1000 50000 |
| MAC San Antonio | 500 | WJMW Anchora | 10000 | KGHL Billinas, M | 5000 | WHRT Hartselle, Al | 250 d |
| SXX Salt Like CIty, Utah | 50000 | KSUD W. Memphis, Ark. | 250 | WLSV Wo | 10000 | WAMI OpD, Ala. | 1000 d |
| UN Opoor | 500d | WKTG Thomasville. Ga. | 1000 d | WTNC Thomasville. | 1000 d | KIFN Phoenix, Arlz. | 1000d |
|  |  | KLOE Goo | 1000d | KXGO Fargo, | 5000 | KOSE Oseeola. Ark | 1000 d |
| 640-468.5 |  | WFMW Mad | 250 d | KwIL Albany. Oreo | 100 |  |  |
|  |  |  | 1000 | WAEB All |  | WOWW Nau | 2500 |
| KFI Los Angeles. C | 50000 | , | $250 d$ | WEAN Provldienee. R.I. | 5000 | WAZE Clearwater. F | 500 d |
| A | 5000 | WMMS Bath, | $1000 d$ | BD Bam | 1000d | WKK0 Coeoa, Fla, | 1000d |
| HLo Akron, Ohio | 000 | WACE Chicopee. Mass. | 1000d | WETB Johnson City. | 1000d | WERD Atlanta, Ga. | 1000 |
| WNAD Norman, OkI | 1000d | KWRE | 1000 | WMC Mem | 500 | WDMG Douglas. Ga. | 000 |
|  |  | KWOA Worthington | 1000 d | KTHT Houston. Tex. | 5000 |  |  |
| 50-461.3 |  | KURL BIllin | 500d | KFYO Lut | 0 | KWPC Musea | $250 d$ |
|  |  | lbu |  | KUTA Blan | 100 | Pitts |  |
|  |  | W00S onson | 1000 d |  |  | WAYE Oundalk. Md. | 500 d |
| KIKK Pa | 250 d | WFMC Golds | 1000 d | K | $\begin{aligned} & 5000 \\ & 5000 \end{aligned}$ | WSBS Gt. Barringto | 250d |
|  |  | WMG8 Bowling Green, Ohio | $1000 d$ | K | 5000 |  |  |
| 660-454.3 |  | KBOY Medford | 1000d | wead eau Clalro, Wha. | 5000 | WMAG Forest, miss | 5004 |
| rban | 10 | WNAK Nant | 1000d |  |  | K |  |
| EO 0 mah | d | WPIT Plttsb | 1000d | 800--374.8 |  | MO Fairmont. N, | cood |
| NBC Now York, | 0 | WPAL Charlesto | 1000 d | C | 0 | AMO Plt | 1000 d |
| ESG Greenvilio. | 0000d | WRZY Grand Pralrio, Tez |  | CKO |  |  |  |
| Y Dallas. Tex. |  | KSZY Grand Utah | 1000 d | CFOB Ft. Frances, | 1000 | WLBG Laur | 0 d |
|  |  | WPIK Alexandr | 1000 d | CJLX Ft. William, On | 0 | WIVK Knoxville, Te | 0d |
| $670-447.5$ |  |  | 10008 | CJBQ Bellevilis, Ont. | 1000 | WMTS Mur | 0d |
| WMAQ Chleago, | 50000 | KULE Ephr | 1000d | C | 50000 | KFST Ft. Sto |  |
|  |  | WXMT Merrill, | 1000d | CHRC Quebee, ${ }^{\text {a }}$ ( | 10000 | KPAN H | Od |
| 680-440.9 |  |  |  | C | 0 | KSFA Nacogdoc | Od |
|  |  | 740-405.2 |  | WHOS St. | 1000 | KONO 8an Anton | 5000 |
| 0 St. Thom | 1000 | cexa Edmonton. | 50 | WMGY Mont | 1000 d | $y_{t}$ |  |
| CJOB Winniper. | 10000 | CBL Toronto, Ont. | 50000 | KINY Juneau. Alaska |  | WEVA Empo | 1000d |
| GKGB Timmins. | 10000 | WBAM Mantgomery, | 50000d | KAGH Crossett. Ark. | 25 | WOAY Oak HIII, W | d |
| NBC San Fran.: | 50000 | KUEQ Phoenix, Ariz. | 1000 d | KVOM Morrilt | $250 d$ | WFOX milwaukee, W | Od |
| PIN St. Petershurg. | 1000d | KBIG Avalon, Callf. | 10000 d | KUZZ Bakersfield, Ca | $250 d$ |  |  |
| WCTT Corb | 1000 | KCBS San Franci | 5000 | KDAD Weed. Ca | 1000 d | 870-344.6 |  |
| CBM Baltimor | 10000 | rings, Colo. | 1000 | KBRN Br |  |  | 250 d |
|  | 50000 |  | 1000 d |  | 2500 |  |  |
| WOBC Eseanaba. | 1000 | WKIS Orlan | 5000 | WSUZ Palatka, | 1000 d | WWL New Orleans | 50000 |
| NR BIngham | 15000 | ME Bol | $\begin{aligned} & 500 \mathrm{~d} \\ & 250 \mathrm{~d} \end{aligned}$ | ro, 6 a | 1000 d | KAR E. Lansing, M1 | 5000 d |
| RVM Rochest | $250 d$ | KBOE Oskaloosa, Iowa | 250d | WBOk New Orleans, La. | 1000d | WHCU Ithaca. | 1000d |
| PTF Ratelot | 50000 | WNOP Nempor | 1000d | WCCM Lawrence. Mass. | 1000d | WGTL Kannapolis. N.C. | 1000d |
| WISR Butler. | 2500 | WFRB Frostburg, Md. | $250 d$ | KREI Farmington, Mo | 1000d | WHOA San Juan, P,R. | 5000 |
| APA San Juan, P.R | 10000 | WTAO Cambridge. Mas | $250 d$ | KDBM DIllon, Mont. | 1000 d | Ft. Worth, Tex. | 250 d |
| WMPS Memphi | 10000 | KPBM Carlsbad, N.Me | 1000 d | WKDN Camden. | 1000 d | WFLO Farmvil | 1000d |
| NS San Antonio, | 50000 | WGSM Huntingto | 1000d | KJEM Okla Clty, Ok | 250d |  |  |
| OMW Omak | 1000 d | WMBL Mor |  | KPDQ Portland | 1000 d | 880-340.7 |  |
| WCAW Charles | 250 | WPAQ Mount Alry | 10000 d | WCHA Cnambers bur | 1000 d |  |  |
| 690-434.5 |  | KRAMG Tulsa, Okla. WVCH Chester, Pa. |  | WEAB Gre |  | WRRZ Clínton. | 000d |
|  |  | WIAC San luan, P.R | 10000 | WDEH Sweetwator, T | 1000 d | WRFD Worthington. |  |
| CBU Vancouver, B.C | 10000 50000 | WBAW Barnwell, S.C | $1000 d$ | KDDD Dumas. Tex. |  | 89 |  |
| WVOK BIrmingham. | 50000d | WIRJ Humb | 2500 | KBUH Brloham City, Utah | $250 d$ | 890-336.9 |  |
| KVNA Flagstaft. Ariz. | 1000 | WTRH Housto | $\begin{gathered} 2500 \\ 50000 \end{gathered}$ | WSVS Crowe, Va. WKEE Huntington. | $\begin{aligned} & 5000 \mathrm{~d} \\ & 1000 \mathrm{~d} \end{aligned}$ | WLS Chicago, llf. | 00 |
| KEVT Tueson, Ariz. | 250 d |  | 1000 |  |  | WHNC Henderson. |  |
| KBBA Benton. Ark. | 2500 | WBCI Wllliamsburg, ${ }^{\text {V }}$ | 500 d | wDUX Waupaca, | Ood | KBYE | 000 |
|  |  |  |  |  |  | 900-333.1 |  |
| ADS Ansonla, Cón |  | 750-399.8 |  |  |  | -333.1 |  |
| APE Jacksonvilie, | 25000d | WSB Atlanta, Ga | 50000 |  |  | CKTS Sherbrooke, | 000 |
| KULA Honolulu. Hawa | 1000 | WBMD Ballimore. Md. | 1000 d | WABW Annapolls. Md. | 250 d | CHML CH |  |
| BLI Blackfoot. Idaho | 1000 d | KMmJ Grand Island, Nob. | 10000d | KCMO Kansas City | 50000 | C |  |
| GF Coffoyvile, ${ }^{\text {a }}$ | 100 | WHEB Portsmouth. N.H. | 1000d | WGY Sehen | 50000 | CKJL St. Jer | 1000 |
| NIX New Orleans, La. | 50 | - | 2500 | W KBC N.WIIkeshoro. N.C. | 1000d | CJVi Vietoria. | 10000 |
| CR Minneapoilis, Minn. | 5 | KXL Portland. Oros, | 50000 | WCEC Rocky Mount. N.C. | 1000 d | CKBI Prince Albert. Sask. | 10000 |
| STL St. Louls, Mo. | 10 | WPDX Clarksburg, W.Va. | 1000d | WEDO M | 1000 d | WATV Birmlngham, Ala. | 1000d |
| Co Prineville, Or | 1000d | 7 |  | WKVM San Juan. |  | WGOK Mobll | 1000 d |
| USD Vermillion. S. ${ }^{\text {d }}$ | 1000 d |  |  | - |  | RB Falirb | 10000 |
| EY EI | 10000 250 | KGU Honolulu. | 10000 5000 | 820-365.6 |  | KHOZ Harrison. Ar | 1000 d |
| EY Tylor. | 250 d | WCPS Tarboro, N.C. | 1000 d | WAIT Chleaso, 11 | 5000 d | K BIF Fresno, Calif. | 1000d |
| CYB Bristol | 10000 d |  |  | WIKY | $250 d$ | KGRB West Covina. Call | 250 d |
| NNT Warsaw. | 250d | 770-389.4 |  | WFAA Dallas. ${ }^{\text {W }}$ | 50000 | WIWL Georgetown, Del. | 1000 d |
| ELD Fisher, W.Va. | 00 |  |  | WBAP Ft. Worth. T | 50000 | WSWN Belle Glade, Fla. | 1000 d |
|  |  | WCAL Northiald. | 5000 d |  |  | WCGA Calhoun, G | 000d |
| 00-428.3 |  | WEW St. Louis. | $1000 d$ | 830-361.2 |  | WCRY Maton, G | 250 d |
| LW CIneinnatl. Ohlo | 50000 | Ibuquer | 00 |  |  | WEAS Savannah, Ga. | 5000 d |
|  |  | New York. N.Y | 50000 |  | 50000 | KTEE Idaho Falls, Id | 1000d |
| 710-422.3 |  | attle, Wash. | 10 | KBOA Kennett. | 10000 | KSIR Wehi | 250 d |
| SP Leami |  | --384.4 |  | WNYC Now York, N.Y. | 1000 | WLSI Pikerlile. K | 5000 d |
| RG Grave | 100 | -384.4 |  |  |  | KREH Oakdale, La. | 250 d |
| VM Ville Marie, Que. | 1000 | WBBM Chi | 50000 | 840-356.9 |  | WCME Brunswick, Main | 1000 d |
| KRG moblle. Ala. | 1000 5000 | WJAG Nort | 1000 d 1000 d | WKAB Moblie | 1000d | WATC Gayio | 1000d |
| MPC Los Angeles. BTR Denver, Colo. | 50000 5000 | WBBE Forest City, N.C. | 1000 d | WKNB Now Britain. Conn. | 1000 d | KTIS Minneadolls. Minn, | 1000d |
| GBS Mlami, F | 50000 | KSPI Stilwater, Okla. | 250 d | WHAS Loulsville. Ky. | 50000 | WFAL Greenvilie, | 1000 d |
| ROM Rome, | 1000 d | WAVA Arlington, Va. | 1000 d | St |  | KISK Columbus, Nebr | 1000 d |
| EL Shreveport, | 500 |  |  |  |  | WOTW Nash | 1000d |
| B Kansas City. | 10000 50000 | 790-379.5 |  | 850-352.7 |  | RV Boonv |  |
| ${ }^{\text {Ne}}$ | 50000 10000 | cFCW Cam | 10000 | CKVL | 50000 | WSPN Sarato | 1000d |
| KJB Mayagugz. P.Rico | 1000 | CKMR New | 1040 | CKRD Red Deef. A | 10000 | WAYN RO |  |
| TPR Paris, Tenn. | 250d | CH | 10000 | WYDE Birmingham, AI | 0000 | KFNW Fargo. N. Dak. |  |
|  |  |  |  | KOA Denver, Col | 50000 | WCNS Canton, Dhlo | 50 |
|  |  |  | s000d | Galnesville. FI |  | WFRO Fremont, Ohio | 500 d |

Ke. Wave Length WFPA Cloarfeld. Pa. WKXV Knoxville Tenn. WCOR Lebanon. Tenn. KALT Atlanta, Tex. KMCO Conroo. Tex. KFLD Floydada, Tex.
 WAFC Staunton, WATK Antigo, Wis.

910-329.5
CLDV Orumheller, Alta. CKLY Lindsay, ont.
CBD Ottawa, Ont. C80 Ottawa, Ont. GHRL Roberval.
WOVC O.C.
Dadevilie, Ala WDVG Dadevilie, Ala. KPHO Phoenlx 1 Ariz.
KLCN By
Bythevilio, Ark. KAMD Camden, Ark,
KOEOO EI Cajon, Calif. KEWB Oakland, Callf, KOXR OXnard, callt.'
KPOF nr. Denver, Colo. KPOF
WHAY Dew Benver, Colo.
Britain, Conn WPLA Plant clity, Fla WGAF Valdosta, Ga. WAKO Lawrenecvilio. III. WSUl Bowa city, lowa WABI Bannor, Maine WFOF Flint, Mich. WCOC Meridian, Miss, KYSS Missoula, Mont. KBIM Roswell, N, Mex. KCJB Minot, N.Dak. WPFB Middletown, Ohio KGRC M Mrami. Okla. WAVL Apollo. Pa.
 WSBA York. Pa. WPRP Ponce. P.R. WNCG North Charleston, S.C. 5000 d WORD Spartanbure. S.C. 5000 d WJCW Johnson City. Tenn.
WEPG S. PIttsburgh. Tenn. KNAF Frederieksburg. Tex. KRIO McAllen. Tox. KALL Salt Lake City, Utah
WWRJ White River Junction
WRNL Rlehmond, Va, 1000 d WHYE Roanoke. Va. KORD Pasco, Wash. KISN Vaneouver, Wash. Wis. 1000 d

## 920-325.9

## $\begin{array}{lr}\text { CJCH Hallfax, N.S. } & 10000 \\ \text { JJCJ Woodstoek. N.B. } & 1000\end{array}$ CKCY Sault St. Maris, Ont. 10000 NCTA Angham, Ont. WW WR Russollvilie. Ala. 1000 d KARK Little Rock. Ark, 5000 KVEC San Luis Obispo, Cal. 1000 KREX Grd, Junction, Colo. 5000 KLMR Lamar, Colo. WMEG Eau Gallio. KAHU Waiphau, Hawall WGNU Granite City, Ill. WMOK Metropolts, III, KFNF Shenandoah, lowa WTCW Whitesburg. Ky WBOX Bogalusa, La WPTX Lexington Pk.. Md. WMPL Haneock. Mieh. KWAD Wadena, Minn. KRAM Las Vegas, Nev. KOLO Reno. Nev. <br> KQEO Aibuquerque, N. Mox. WTTM Trenton. N. J. WGRT Cortland, N,Y, WBEB Burlington. N.C. KGAL Columbus, Onio KGAL Lebanon. Oreg. WJAR Providenes, R.I. WTND Orangoburg, S.C, KEZU Rapid Clity, S.Dak. WLIV Livingston, Tenn. KELP EI Paso, Tex, KECK Odessa, Tex. KTLW Texas Clty, Tex. xLY Sonkano. Wash. Wash. WMMN Falrmont, W.Va <br> wokY Milwaukee, Wis. <br> 1000 d <br> $1000 d$ <br> 1000 <br> 1000 . 1000 d <br> 1000 d 5000 5000 5000 1000

W.P.
1000 d
1000 d
1000 d
500 d
1000 d
500 d
250 d
250 d
500 d
1000 d
1000 d
250 d w

COOd WETO St. John's, N.F. KTKN Gadsden. Ala. KTKN Ketehikan, Alaska
KAPR Douplas, Ariz KHJ Los Anpeles. Calif. KMET Paradise, Callf. KIUP Durango, Colo. WIKSB Milford, Del. WHAN Haines Clity, Fla. WKXY Sarasota, Fla. WMGR Balnbridgo. Ga. KSEI Poeatello, Idah WTAD Quincy, 111. WKCT Bowling Green, Ky. WFMD Froderick. Md. WREB Holyoke, Mass.
WBCK Batto Crook. Mieh. KKIN Altkin. Minn. WSLI Jackson, Miss.
KWOC Poolar Bluff. KOFI Kalispell, Mont KOGA Ogallala, Nebr. WWNH Rochester. N.H. WPAT Paterson, N.J
WBEN Buffalo, N Y . WIZR Johnstown, N. Y
WSOC Charlote, N.C. WRRF Washington, WKY Oklahoma City, Okl KAGI Grants Pass, Ore WCNR Bloomsburg. Pa KSDN Aberdeen, S.D. WSEV Sevierville, Tenn KITE San Antonio. KENY Bellingham, Ferndal WSAZ Huntincton. W.Va. KROE Sheridan, Wyo. $940-319.0$
CBM Montreal, Que. CJGX Yorkton, Sask. CJB Vernon. B, C.
KOBY Tueson, Arlz KFRE Fresno, Callif. WINZ Mlami, Fla. WMAZ Macon, Ga.
WMIX ML. Vernon, I KIOA Des Moines, Iowa WYLD Now Orleans, La. WMEW Baltimort, Md WFNC Fayettevile, N. C. KGRL Bend, Ore: WESA Charlerol. WGRP Greonville, Pa.
WIPR San Juan, P.R. KIXZ Amarillo, To
KTON Balton. Tex. KATQ Texarkina, 950-315.6 <br> \section*{ <br> \section*{ <br> $C$
$w$} KXJK Forrest Clty, Ark. KFSA Ft. Smith, Ark.
KAHI Auburn, Calif. KIMN Denver. Colo WNUE Ft. Waiton Sch., Fla, WGOF Orlando. Fla. WGTA Summerville, Gi
WGOV Valdosta. Ga WGOV Valdosta, Ga. KBOI Bolse. Idaho KLER Orofino, Idaho WXLW Chicago, III. KOEL Indianapolls. In KJRG Nowtin, lowa WBVL Barbourville, K WAGM Presque Isle, Main WORL Boston, Mass. WWJ Detroit. Mich. KRSI St. Louis Park, Minn. 10000 WBKH Hattlesburg. MIss. KLIK Jefferson Clity, Mo. KLHS Lordsburg, N. Mex
WBBF Roehester, N.Y. WPET Grieansboro. N. KYES Roseburg, OR.C. WNCC hoseburg, Orep WPEN Philadolphla, Pa WSPA Spartanburg. S.C. KWAT Watertown, S.Dak WAGG Frankiln, Tenn KDSX Denison. Tex KPRC Houston, Tox.
1000d KSEL Lubboek. Tex.

Kc. Wave Length WITT Lowisburg, Pa. WHIN Gallatin, Tenn. KBUY Amarlilo. Tex KODA Houston, Tex KAWA Marlin. Tex. WELK Charlottesvifie, $V$ a. W MEV Marion, Va. WPMH Portsmouth. Va. wCST Barkeley Sprgs. $W$ 1020-293.9

KGBS Los Angeles, Callf. WCIL Carbondale. $\mathrm{III}_{.}$ WPEO Peorla, Ill.

1030-291.1
WBZ Boston, Mass. WBZA Springfield, Nass. 1040-288.3

KHVH Honolulu, Hawali WHO Des Moines. Iowa

1050-285.5
CFGP Grande Pralrie, Alta. 10000 CKSB St. Bonlface. Man. WUM Toronto, Ont, WCRI Scottsbore. Ala KVWM Show Low APi KOFY Littla Roek. Ark (WSO Wasco, Callf. KLMO Longmont, Colo. WSUG Clewiston, Fla. WJSB Crestview, Fla. WIVY Jacksonville, Fla. WHBO Tampa, FI WRMF Titusville, Fla WAUG Augusta, Ga. WBIE Marietta, Ga. WMN2 Montezuma, Ga. WDZ Decatur III
KNCO Garden City, Kans. WNES Central Clty, Ky ZZIP CIncinnati, Ohlo CLI Shreveport KVPI Villa Platte, La WOMR Silver Spro., Md. WPAG Ann Arbor, Wieh KLOH Pipestone, Minn. waCR Columbus, Miss KMiS Portagaville, Ho KSIS Sedalla. Mo.
KRBO Las Vegas, Nov WSEN Baldwinsville WSEN Baldwinsvilio, N.Y. WMGM New York. N. WBTL Farmville, N.C WFSC Franklin, N.C.
WLON Lincolnton. N.C. WWGP Sanford. N.C xCCO Lawton, Okla KFAI Tulsa, Okla. KUBE Pendieton, Oreg. WBUT Butler, Pa. WLYC Williamsport, Pa WSMT Sparta. Tenn. KLEN Klleen, Tex. KPLA Plalnview. To KCAS Slaton. Tex WGAT Gate City. WBRG Lynchburg, $V_{3}$ WBRG Lynchburg. Va KNBX KIrkland. Wash. WCEF Parkersburg. W.Va. wLIP kenosha wis KWIV Douglas Wyo.

## 1060-282.8

CFCN Calgary Alta. KUPD Tempe, Ariz KPAY Chico, Callf. WNOE New Orleans. La Mich. 1000 d WMAP Monroe. N.C. 250 d WHOF Canton, Ohfo WRCV Philadelphia. Pa.
WRJS San German, P,R.

## 1070—280.2

$\begin{array}{ll}\text { CBA Sackullle. N.B, } & 50000 \\ \text { CHOK Sarnia. Ont. } & 5000\end{array}$ WAPI Birmingham, Ala. KNX Los Angales, Callf. WVCG Coral Gables, Fla.
W.P. |Ke

5000
50000
1000 d 10000 10000 10000

$$
0
$$

50000 50000 1000 d

Kc. Wove Length 250d WIBC Indianapoils, Ind. I000d KIRL Wichita, Kans. KHMO Hannibal, Mo. WHPE Hioh Point. N WMIA Arecibo, P.R. WFL Lookout Mitn., Tenn. WDIA Memphls, Tenn. KOPY Alice Tex. WKOW Madison, Wis.

## 1080-277.6

CHED Edmonton, Alta. WSCO Santa Cruz, Callf WTIC Hartford, Conn. WKLO Loulsvilif.
WOAP OwOsso. Mifeh. WOAP OwOSSO, Mich WEWO Laurinburg. N.C KWIS Portland, Oreg. WYRE Pittsburgh, Pa

## 1090-275.1

CHEC Lethbridge, Alta. CHRS St. Jean, Ont
WCRA Effitgham, lil. Ark. 50000
KHAl Honolulu, Hawail KNWS Waterloo, lowa WBAL Baltimore, Ma. WMO Boston, Mass. KING Seattlo, Wash
1100-272.6
KFAX San Francisco. Callf. 50000 WLBB Carroliton, Ga. 250 d WYW Clevaland. Ohlo. 10000 d WGPA Bethlehem

1110-270.1
CFML Cornwall, Ont.
CFT' Galt. Ont.
KRLA Pasadena, Callf
WALT Tampa, FIa
wat Hilo. Hawal KFAB Omaha, Nebr KFAB Charlotte, N.C KBND Bend Óreg WNAR Norristown. WVIP Capuas, P.
$1120-267.7$
WUST Bethesda. Md.
KMOX St. Louls. Mo.
WWOL Buffalo, N.Y
1130-265.3
CKWX Vancouver, B.C. KRDV Dinuba, Callf. KEKO Kallua. Hawail KWKH Shrevaport. L WDGY Minneapolls. Minn. 50000 WNEW New York, N,Y, 50000 1140-263.0
CFTK Terrace, B.C. CKXL Calgary. Alta. KRAK Sacramento, Callf. WMIE Mlaml, Fla. KGEM Bolse, Ida
WSIV Pekln, Ill. KLPR Oklahoma City, Okla. WITA San Jua, R.R. K\$00 Sloux Falls, S.Dak. 10000 WRVA Rlehmond, Ve Jem $\$ 0000$ $1150-260.7$
CKSA Lloydminstar, Alta. CHSJ Salnt John. N. B. CKOC Hamilton, Ont.
CKX Brandon. Man. CKX Brandon, Man. ${ }^{\text {CKTR Three }}$ Rivers. ${ }^{\text {CKe. }}$ WBCA Bay Minette, Ala.
WGEA Geneva, Ala.

$$
\begin{aligned}
& \text { WJRD Tuscaloosa, Ala. } \\
& \text { KCKY Coolidge, Ariz. }
\end{aligned}
$$ KXI Gooldes, Ariz. $\quad 1000$ KFSG Los Angeles, Callf. KRKD Los Angeles. Cailt. KJAX Santa Rosa, Calif. K

154 WHITE'S RADIO LOC

Ke, Wava Langth WHSY Hattiosburg, Miss, WSSO Starkville, Miss. KODE Joplin. Mo.
KLWT Lebanon $M$
KANA Anaconda, Mon KBMN Bozeman, Mont. KXLO Lewiston, Mon KLCB Libby, Nont. KTNC Falls Clity, Nabr, KELY Ely. Nev. KLAS Las Vogas, Ne KOOT Reno. NeV. WMOU Berlin, N.H. WTSV Claramont, N.H. WCMC Wildwood. N.J. KOTS Deming, N.Mex. KYVA Gallup, N. Mox, K RSY Roswell, N.Mex. WNIA Chooktowaga, N.Y. WENY EImira, N.Y. WLFH Little Fails, N.Y. WSKY Ashoville, N.C. WFAl Fayettevilie, N.C. WISP Kinston, N.C. WNNC Newton, N.C. WCBT Roanoko Ria., N.C. KOIX Dlekinson, N.Dak. WCOL Columbus. Ohio WIRO Ironton. Ohio WTOL Toledo. Ohio WADA N. of Ada. Okia. KIAL Astoria, Oreg. KRNS Burns. Ores. KOOS Coos Bay, Oreg.
KGRO Grosham, Oreg. KGRO Gresham, Ores. KQ1K Lakevlow. Ores. KTOO Tolodo, Oros. WBVP Beaver Falls, Pa
WEEX Easton.
Wa. WEEX Easton, Pa. WKBO Harrisburg, Pa
WCRO Johnstown, $P$ a. WCRO Johnstown, Pa.
WBPZ Lock Haven. Pa,
WNIK Aroclbo PR WNIK Aroclbo, P,R. WERI Wostorly, R.I. WNOK Columbia. S.C. WOLS Florence. S.C. KMMT Mentnnvilo. Tonn. KSIX Corgus Christi
KDLK Dei Rlo, Tex. KNUZ Houston. Tex KERV Korrvillo, Tox. KEEE Nacogdochos, Tex KOSA Odessa. Tax KHHH Pampa, Tex KSST Sulphur Spros.. Tex. KMUR Murray. Utah KOAL Prleo, Utah wJOY Burilngton, $V t$. WBBI Abingdon, Va.
WCF Clifton Forge, WFVA Frederieks burg. Va. WNOR Norfolk. Va. KLYk Everott, Wash. KREW Sunnyside, Wash. WLOG Logan, W.Va. WTAP Parkersburg, w WHBY Appleton. Wis, WHVF Wausau, wis. KVOC Casper, Wyo.

## 1240-241.8

CFLM La Tuque, Que.

## FNW Norman Wells.

CFPR Prince Northwest Terr.
CFWH Whitehorse. Y.T. CJAV Port Albernl,
Jw Sumpersit
CKBS St. Hyacinthe, Que.
Che. Williams Lake, B.C. WEBS Browton, Ala.
WULA Eufaula. Ala.
WARE Forence.
KZOW So. of Globo. Ariz.
KOFA Yuma, Ariz. Ark
KPLY Creseent Clity, Call
KMBY Creseent City, Ca KPPC Pasadena, Callf. KROY Sáramonto Call. KRNO San Bernardino, Calif. KRON San Bernardino, Cali KSMN San Diapor, Calif.
KRDO Colo. Sprge., Colo. a. Pa,
Pa,
Pa, . $\begin{array}{r}10 \\ 2 \\ \hline\end{array}$

## k.


. 2
fex.
.. Tex.
$\qquad$ .

a.

- 100
W.P.
$\qquad$ 50 250 KDGO Duranco, Colo KSLV Monto Vista. Colo,
KCRT Trinldad, Golo.
WWCO Waterbury, Conn,
WBGC Chiploy, Fia.
WLCO Eustis. Fla.
WINK Fort Myers, Fla.
WMMB Metbourne, Fla,
WFOY St. Auvustine, FI
WBHB Fitrierald, Ga.
WOUN Gainesville, Ga.,
WLAG LaGrange, Ga.
WBML Macon, Ga.
WWNS Statesboro, Ga.
WPAX Thomasvillo, Ga. WTWA Thomson, Ga, 250
250 250
250
25 250
500
1000 250
250 1000
250 1000 250 250
250 250
250 250
250
250 25
25
25
25 25
25
100
25
100
100

250
250
250

## 250 250 250 250 250

잉~HNO
250
000
000
250
250
100
1000
$\begin{array}{r}100 \\ 25 \\ 2 \\ 100 \\ \hline\end{array}$
250
250
000
250
250
250
250
250
1000
250
250
250
250

| 250 |
| :--- |
| 250 |
| 250 |
| 250 |
| 000 |

1000
1000
1000
105

> 1000 250 1000 250

1000
100
250
3NN
1000
250
C. 250

250
250
250
250
250
250
1000
+1000
1000 KEAN Brownwood. Tex. 000 KORA Bryan, Tex.

KOCA Kligore. Tex. KCKG Snora. Tex. Tox KCKG Snora. Tex,
KXOX Sweotwater, WSKX Swentwater, Tex WSKI Montpelier, Vt.
WSSV Potersburg. Va. WROV Roanoke. Va
WTON Staunton, Va KXLE Ellensburgh. W
KGY Olympla, Wash. KGY Olympla, Wash. WKOY Bluefeld, W.Va
250 WDNE EIkine, W, Va.
W.P. 250
250
250 WOMT Manitowoc, wis,
WIBU Poynette, Wis.
WOBT Rhinolander, Wis.
WJMC RIse Lake, Wis.
KFBC Cheyonne, w yo.
KLUK Evanston, Wyo,
KASL Neweastie. Wyo.
KRAL Rawlis, Wyo,
KTHE Thermopolls, wyo.
$1250-239.9$ 150
250
1000
1000
1000
1000
250
1000
1000
 $1270-236.1$ CHAT Medicine Hat, Alta. 1000
CHWK Chiliwack. B.C. 10000 CHWK Chilliwack, B.C. $\quad 10000$
CJCB Sydney, N.S. CFGT St. Joseph d'Alma, Quabee 1000
1000 d $\begin{array}{ll}\text { WGSV Guntersville, Ala. } & 1000 \mathrm{~d} \\ \text { WAIP Prlehard, Ala. } & 1000 \mathrm{~d}\end{array}$ KBYR Anchorage. Alaska 1000 $\begin{array}{ll}\text { KDJ Holbrook, Ariz. } & 1000 \mathrm{~d} \\ \text { KADI Ping Bluft, Ark. } 5000 \mathrm{~d}\end{array}$ KAHR Redding. Callf. $1000 d$ KCOK Tulare. Callf. WNOG Naples, Fla. WHIY Orlando, Fla. WTAL Tallahassen, Fla. WKRW Cartersullo, Ga, WGBA Coluılus, Ga. WJJC Commeree, Ga. KNDI Honolulu. Hawail KTFI Twin Falls. Idaho WEIC Charleston, II. WHBF Rock Island. III
WCMR Elkhart. Ind. WWCA Gary, Ind. WORX Madison. Ind. KSCB Liberal, Kans, WAIN Columbla, Ky. WFUL Fulton. Ky.
KVCL Winnfield, WSPR Springtheid, Mass, WXYZ Detroit, Sileh. KWEB Rochester, Min WVOM loka, Miss. WLSM Louisville, Miss. $\quad 1000 \mathrm{~d}$ KUSN St. Joseph, Mo. $\quad 1000 \mathrm{~d}$ $\begin{array}{lr}\text { KBUB Sparks. Nov. } & 1000 \mathrm{~d} \\ \text { WTSN Dover, N.H. } & 5000\end{array}$ WOVL Vineland, N.J. 500 d KRAC Alamogorulo, N. Mex. 1000 d
WHLD Nlagara Falls, N.Y. 5000 d WDLA Walton, N.Y. N.Y. 1000 d WCGC Bolmont, N.C. $\quad 1000$

WMPM Smithield, N.C. 5000 d $\begin{array}{ll}\text { KBOM Mandan, N.Dak. } & 1000 \\ \text { WILE Cambridge. Ohio } & 000 d\end{array}$ $\begin{array}{ll}\text { KWPR Claremore, Okla. } & 500 \mathrm{~d} \\ \text { KAJO Grants Pass, Ores. } & 5000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { WLBR Lobanon, Pa. } & 1000 \\ \text { WBHC Hamoton, S.C. } & 1000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { KNWC Sloux Falls, S. Dak. } 1000 \\ \text { WLIK Nownort, Tenn. } & 5000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { WLIK Nowport, Terin. } & 5000 \text { d } \\ \text { KIOX Bay City, Tox. } & 1000\end{array}$ | KHEA Bio Spring. Tox. | 10000 |
| :--- | :--- | $\begin{array}{lr}\text { KEPS Eagle Pass, Tex. } 1000 \mathrm{~d} \\ \text { KFJZ Fort Worth, Tex. } & 5000\end{array}$ WTID Newport Nows, Va. 1000 d $\begin{array}{ll}\text { WHEO Stuart, Va. } & l 000 \mathrm{~d} \\ \text { KCVL Colville, Wash. } & 1000 \mathrm{~d} \\ \text { KBAM Lonoview. Wash. } & 5000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { KBAM Lonoviow. Wash. } 5000 \mathrm{~d} \\ \text { WKYR Keyser, W.VA. } & 5000 \mathrm{~d}\end{array}$ WRJC Mauston,

CHIQ Hamliton, Ont. 5000

| CJMS Montreal. Que. | 10000 |
| :--- | ---: |
| CKCV Quebec, Que. | 10000 |

Kc. Wave Length W.P.|Ke. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W. KWCL Oak Grove, La
WEIM FItehburg. Mass. WFYC Alma, Mich WTCN Minneapolls, MInn.
KVOX Moorhead, MInn. KVOX Moorhead, MIn
KDKD CIInton, Mo. KYRO POTOSI, MO. KCNI Broken Bow. Nebr, KTOO Henderson. Nev WHBI Nawark, N.J. WADO New York, N.Y WRSA Saratoga Spros., N.Y. WSAT Sallsbury, N.C. WYAL Seotland Neck.
WONW Defance, Ohio
N.C. 500 WONW Jothance, Ohio KLCO Poteau, okla. KERG Eugene, Oreg.
WBRX Berwlek, Pa. WHVR Hanoyer, Pa.
WKST New Castlo, WCMN Areclbo. P.R. WANS Anderson. S.C. WMCP Columbia. Tenn WDNT Dayton, Tenn. KNIT Abliene, Tex KWHI Bronhan, Tex. KRAN Morton. Tex. KNAK Salt Lake City, Utah WYVE Wytheville. Va.
KODF Spokane, Wash. KIT Yaklma. Wash. W VAR Richwood, W.Va.
W NAM Neonah, Wis.

## 500 d 5000

 5000 WSOL Tampa, Fia. WSOL Tampa, Fla,WMTM Moultrla, Ga WImO winder, Ga KOZE Lewiston, Idaho WTAQ LaGrange, III. WFRX W. Frankfort, ItI. WHLT Huntington, ind, WMFT Terre Haute, Ind. KGLO Mason City. Lowa WBLG Lexington, Ky. WIBR Baton Rouge, La KANB Shreveport, La. WFBR BaltImore, Md. WJDA Quincy, Mass. WOOD Grand Raplds, Mleh. WRBC Jackson. Miss. oo0d KMMO Marshall, Mo. 000d IKBRL MeCook, Nebr. 5000 KPTL Carson City. Nev WAAT Trenton, N.J. WOSC Fulton, N. Y. WEEE Rensselaer, N.Y.
WGOL Goldsboro, N.C. WOOL Goldsboro, N.C. 1000 WLNC Laurensburg. N.C. 000d WERE Cieveland, Onio 500 d WMVO Mt. Vernon, Ohlo 500d KORE Tulsa. Okla.
000 d
KOOV Medford Orea
I000d KOOV Medford, Oreg.
1000 d
KACI Tha Dalles OP
KOOd
500
WACI The Dalles. Opeg 00 WWCH Clarlon, Pa. 5000 WTIL Mayaguez, P.R. 00 WK SC Kershin. 5000 WKSC Kershaw, S.C. 1000 WMTN Mopristown, Tenn. WMAK Nashvillo, Te
KVET Austin, 1290-232.4 CFAM Altona, Man. CKSL London. Ont. WTHG Jackson Ala. W SHF Sheffield, Ala. WMLS Sylacauga, Ala KEOS Flagstaff, Ariz. KCUB Tucson, Ariz. KDMS EI Dorado. Ark.
KUOA Slloam Sppgs., Ark. KUOA Siloam Spigs. KPER Giliroy, Callf. 10000 5000 1000 K KKAS Silsbee, Tex. 000 K KOL Seattle, Wash. 000 d WCLG Horgantown. W, Var 50000 1000 WKLC St. Albans, W.Va. I000d 1000 KITO San Bernardino. ${ }^{\circ}$ Call 5000 d (ACL Santa Barbara. Callf. WCCC Hartiord, Conn. WTUX Wilmington. Dil. WTMC Deala. Fla. WSCM Panama City Beach. WIRK W. Palm Beh., Fla.
WDEC Americus, Ga. WCHK Canton, Ga. WTOC Savannah, Ga. KYTE Pocatello, Idaho WIRL Peoria, Ifi.
WCBL Benton, Ky, KJEF Jennings, La. WHGR Houghton Lake, Mich. WNIL Niles, Mich.
wola Saline, Mleh. WOlA Saline, Mleh. KBMO Benson, MInn. KALE Batesville, M KGVO Missoula, Mont. KOIL Omaha, Nebr. WKNE Keene, N.H. KSRC Socorro, N. M. WNBF Binghamton, N.Y.
WHKY Hlekory N. WHKY Hlekory, N.C. WHIO Dellaire, Ohlo KUMA Pendleton, Ores. WFBG Altoona, Pa. WICE Providence. R.I. WATO Oak RIdoe, Tenn. KBLT Big Crockett, Tex. KRGV Weslaco, Tex. WPVA Colonial Hots, Tex. WAGE Leesburg, Va. $1000 d$ WVOW Logan w KAPY Port Angoles, Wash. 1000 d WCOW Sparta, Wis. 5000 d

## 1300-230.6

CBAF Moneton, N.B. WAVC Boaz, Ala. WTLS Tallassee, Ala. KWCB Searcy, Ark.
KROP Brawley, Callf. KYND Fresno, Callf. KWKW Pasadena. Callf. KKCN UKiah, Callf.
KVOR Colo. Spras WAVz New Haven, Con WRKT Coco Beach, Conn. 1000

Ke. Wave Length W.P.|Ke. Wave Length
KTOW Sand Spring, Okla. KIHR Hood River, Oreg. KFIR North Bend, Oreg. WCVI Connellsville. Pa. WSA) Grove Clty. ${ }^{\text {P }}$ PR WHAT Philadelphia, Pa. WRAW Reading Pa.
WTRN Tyrone, Pa,
W, WTRN Tyrone, $P$ a. WBRE Wlikes-Barre, Pa WWPA Wlllimsport. Pa
WGRF Aguadlla, P.R. WOKE Charleston, S.C. WRHI Rock HIII, S.C. WSSC Sumter, S.C. KIJV Huren, S.D. KRSD Rapid City, S.Dak WBAC Cleveland, Tann. WKRM Columbla, Tonn WGRV Greeneville. Tenn. WKGN Knoxville, Tenn WHHM Memphis. Tenn. WCDT Winchester, Tenn. KWKC Abllene, Tax. KTSL Burnett, Tex. KAND Corsicana. Tex. KSET EI Paso. Tox. KDUB Lubbock. Tex KRBA Lufkin. Tex. KPDN Pampa, Tex KOLE Port Arthur. Tex KTXL San Angelo. Tex. KVIC N. of Vletoria، Tex.
WTWN St. Johnsbury, Vt. WSTA Charlotte Amalie, V. WKEY Covington, Va WHAP Hopewell, V KAGT Anacortes. Wash. KPKW Pasco, Wash. KAPA Raymond. Wash. KMEL Wenatchee. Wash. WHAR Clarksburg. W. Va. WEPM Martinsburg. W.Va WMON Montgomery. W.Va. WOVE Welch. W.Va. WRIT MIlwaukee. Wis. KYCN Wheattand, Wyo. 1350-222.1
CHOV Pembroke. Ont. CHGB St Anine Que. Pocatiere. Que, CKLB Oshawa, Ont. WELB Elba, Ala. WGAD Gadsden, Ala. KAAB Hot Springs, Ark. KCKC San Bernardino, Callt. KSRO Santa Rosa. Call WNLK Norwalk. Conn. WINY Putnam, Conn. WDCF Cocoa, Fla. WBSG Dade City, Fla WRWH Cleveland, Ga. WRPB Warner Roblns, Ga. KRLC Lewiston Idaho WABP Peoria, III
WIOU Kokomo, Ind. KRNT Des Moines, lowa KMAN Manhattan, Kan WLOU Loulsvilie, Ky. WDEA Ellsworth, Me. WHMI Howell, Mich. WCMP Pine City/ Minn. WKOZ Kosclusko, Miss. KCHR Charleston. Mo. KBRX $0^{\prime}$ Neill, Nebr. WLNH Laconla, N.H. KABQ Albuquerque. N.M. WCBA Corning. N
WBMT Black Mountaln, N.C.
WLLY Wilson. N.C. N.C.
KQOI Bismarek. N.D
WCHI Chillicothe. Onio
KRHD Duncan, Okla.
TTLQ Tahtequah, Okla
KRVC Ashland. Oreq.
KLOO Corvallls, Oree.
NORK York. Pa.
WOAR Darlington, S.C.
WRKM Greenwood, S.C.
KCAR Clarksville. Tex.
KTXJ Jasper. Tex.
KCOR San Antonlo, Tex. WBLT Bedford. V WFLS Fredericksburg, Va. WNVA Norton. Va
WAVY Portsmouth, V
1360-220.4
WWWB Jasper. Ala.

100
250 WELR Monroevilie, Al
250 KRUX Roanoke, Ala.
1000 KLYR Glendale, ArIz.
250 KFFA Clarksvllie, Ark.
100 KFFA Holena, Ark.
1000 Modesto. Call
1000 KRCK RIdgeerest. Call 1000 KGB San Dlemo, Callf. 250 WDRC Hartford, Conn. 1000 WOBS Jacksonville. FIa. WSFR Sanford, Fla. WINT WInter Haven, Fla. WLAW Lawrenceville, WMAC Metter, Ga. WVMC Mt. Carmel, IIt. WGFA Watseka. III. IKXGI Ft. Madison. Iowa KSCJ Sioux City, Iowa
KBTO EI Dorado, Kans WFLW Monticello. Ky. KDBC Mansfeld, La KVIM New theria, L WEBB Dundalk, Mid WKMI Kalamazoo, Allch. KWRY McCook, Nebr. WNN NE Vineland. N.J. WKOP Bineland, N.J. WMNS Olean, N.Y.
WCML Chapel HiI. Y. N.C.
N.D. KEYZ Williston, N.D. WWOW Conneaut, Ohlo KUIK Hillshara, Oreg. WPQR Mokeesport, Pa.
WPPA Pottsville, Pa, WPPA Pottsville, P
WELP Easley, S.C WELP Easley, S.C. WNAH Nashville. Teni KRAY Amarillo, Tex. KACT Andrews, Tex KWBA Baytown Tex. KRYS Corpus Christi, Tex. WBOB Galax, Va.
1000 WHBG Harrisonburg, Va. 5000 WHO Tacoma, Wash. 5000
10000
10000 WMOV Ravenswood, W.V. 1000 . $\$ 000$ WBAY Green Bay, Wis 5000 WISY Virouaua, Wis. KVRS Rock Spring, Wis. $1370-218,8$

## wBYE Calera

 KTPA Prescott, Ark. KEEN San Jose, Calif. KGEN Tulare, Callf. WKAK BlountstownWKOS Ocala. Fla.

\author{

}

W WFDR Manchester. WKLE Washington, WPRC Lincoln, III. WTTS Bloomingto
WGRY Gary, Ind. KDTH Dubuque, io KGNO Dodge City. Kans. KALN Iola, Kans. WGOH Grayson, $k$ y WTKY Tompkinsvllie, Ky. KAPB Marksvilie, La, 1000 d WMHI Braddocks Hts., Md. 500 d WKIK Leonardtown, Md. 1000 d WGHN Grand Haven, Hich. 500d WDOB Canton, Miss. KWRT Boonville. Mo. KCRV Caruthersvilio, Mo. KXLF Butte, Mont WFEA Manchester, N,H.
, N,H. 1000 d
1000 d . 500d 1000 d
1000 d1000

$$
\begin{array}{r}
1000 \mathrm{~d} \\
5000
\end{array}
$$

            产
    WALK Patchogue, N.Y. WIAY Rochester, N.Y1000 d
1000 d1000 d
5000
1000 d
000d500 d
500 d
1000 d
5000
000 d
5000 d
50001000 d1000 d
5000 d
W. $P$


| W.P. | Ke. Wave Length |
| :---: | :---: |
| 1000 d | KPOR Qu |
| 1000 d | W MOD Moundsville, W.Va |
| 5000 | WCCN Naillsulle, Wls. |
| 500d | KVWO Cheyenite, Wyo. |
| 1000 1000 | 1380-217.3 |
| 1000d | CFDA Victorlavillo, Q |
| 5000 | CKPC Brantford. Ont. |
| 5000 | CKLC KInoston, Ont. |
| 5000d | WRAB Arab, Ala, |
| 5000 | WGYV Greenville, Ala. |
| 500d | KDXE N . Little Rock. Ark. |
| 1000d | KBVM Lancaster, Calif. |
| 1000d | KGMS Sacramento, Calif. |
| 1000d | KSBW Sallnas, Callf. |
| 500d | KFLJ W alsenburg, Colo. |
| 1000d | WAMS Wilmington, Del, |
| 500d | WLIZ Lake Worth, Fla. |
| 1000d | WQXQ Ormond Bch., |




| Ke. WaveLength | W |
| :---: | :---: |
| WRSC State College, Pa. | 50 |
| WISA Isabella, P.R. | 10 |
| WHPB Bolton, S.C. | 50 |
| WCSC Charleston. S.C. |  |
| KJAM Madlson, S.D. | 500 |
| WTJS Jackson. Tenn. | 50 |
| KUlp El Campo, Tex. | 50 |
| KBEC Waxahachla, Tox. | 50 |
| KLGN Logan, Utah | 00 |
| WEAM Arlington, Va. | 50 |
| WWOD Lynchburg. Va, | 50 |
| KLOQ Yaklma. Wash. |  |
| 1400-214.2 |  |CKBC Bathurst, N.B.250

250
KSBW Salinas. Callf.
KFLJ Walsenturg.WAMS Wilmineton, Del.WLIZ Lake worth 'FlaWQXQ Ormond Bch., FlaWLCY St. Petersburg, Fla.

## !

500 d
1000 ..... 1000
500 d
5000
5000 d ..... 5000
500 d
500d
5000
00
005000 CJFP RIviere-du-Laup, Que. I250
1000
500d CKRN Rouyn, Que. WMSL Decatur Ala ..... 250
250
WXAL Demopoils, Ala.WFPA Ft. Payne, Ala.WJHD Opelika. Ala,
KSEW Sitka, AlaskaKSEW Sitka, Alaska
KCLF Clifton, Arlz.KCLF Clifton, Arlz.
KXIV Phoonix, Arlz.KTUC Tucson, Ariz.Kvor Yuman, Ariz.
WREL Honolulu, Hawail

            ail.KE Brazll, Ind.WKJG Ft. Wayne. InKCIM Carroll. IowaWMTA Central CityWMTA Central City, KyWWKY Winchester, KY.
    WYNK Baton RougeWYNK Baton Rouge. LaWKT Farmington, Mo.
WTTH Port Huren MinWTTH Port Huran, Mich.
WPLB Greenville, Mlch.KLIZ Bralnerd, MinKLIZ Bralnerd, Minn.WDLT Indlanola, Miss.WDLT Indlanola, Miss.
KUDL Kansas City, Mo.
KWK St. Louis, Mo.
KWK St. Louls, Mo.
WBEX Portsmouth, N.H.
WAWZ Zarephath. N.j.
WBNX Naw York. N.Y.
WLOS Ashevilic. N.C.
VoY Yuma. Ariz.
$\begin{array}{lr}\text { KCL E Dorado, Ark. } & 250 \\ \text { KCLA Pine Blufi. Ark. } & 1000\end{array}$
KCLA Pine Blufi, Ark. $\quad 1000$
KWYN Wynne, Ark,
KRE Berkeley, Gallf.
KREO Indlo. Callf.
KREO Indlo. Callf.
KQMS Redding. Callf.
250
1000
1000
11.
1
TOB Winston. Salem, N.C.
WWIZ Loraln. Ohio
WPKO Waverly, Onto
KSWO Lawton. okla.
KMWU Lawton. Okla.
KBCH Ocean Lake, Oreg.
KBRH Ocean Lake, Ore
KSRV Ontario, Oreo.
WMCB Kitannino.
WMLP Milton, Pa.
WAYZ Waynesboro, Pa,
WNRI Woonsocket, R.I.
WAGS Bishopville, S.C.
WGUS B, Augusta, S.C.
KOTA Rapid CIty, S.Dak
KJET Beaumont, Tex.
KJET Beaumont, Tex.
W Y SH Cilnton, Tenn.
KBWD Brownwood, Tex.
KBWD Brownwood,
KCRM Crane, Tex.

00 W
KBOP Pleasanton, Tes
WSYB Rutland. Vt.
WMBG Richmond, Va
KRKO Everett, Wash.
KPE Spolani, wosn
K KPEG Spokane, Wash.
Wd WBEL Beloit, Wis.
1390-215.7
CKLN Nelson. B.C.
WHMA Anniston. Ala.
KDMA Anniston, Ala
KAMO Rogers. Ar
KAMO Rogers. Ark.
KGER Long Beach. Callf.
KGER Long Beach. Ca
KTUR Turlock. Calif.
KFML Denver, Colo.
KFML Denver, Colo.
WAVP Avon Park, Fl
WAVP Aron Park, Fla
WPUP Gainesville, Fla
WGES Chicago. 111 .
WFIW Falrfield, Ill.
KCLN Seymour, Ind.
KCLN Clinton, Iowa
KCEC Des Moines. Iowa
KNCK Concordla. Kans.
KNCK Concordla. Kans.
WANY Albany, Ky.
WKiC Hazard, Ky.
WKIC Hazard, Ky,
KFRA Frankifn, La,WWEGP Presque Isle. Me
. 5000500

                    KSLY San Luifs Obispo, Cal.
    KSLY San Luis obispo Cal.
rk.100
250
250
25
2
2
20
10
100
100
2
2
2
2
KHOE Truckee, Calif.KONG Visalia. Calif.
KONG Visalia Calif.
KRLN Canon Cily Colo.
KDTA Delta, Colo.
KDTA Delta, Colo.
KFTM Ft. Morgan. Colo.
KBZZ La Junta, Colo.
KBZZ La Junta, Colo.
WSTC Stamford, Conn,
WILI Willimantle, Conn.

Ke. Wave Length WBMA Beaufort, N.C. WSIC Statesville, N.C WHCE Wallace, N.C. WCNF Weldon. N.C KEYJ Jamestown, N. Dak WPAY Portsmouth, Ohio KWON Bartlesville. Okla KTMC McAlester, Okla KNOR Norman, Okla, KNND Cottage Grove, Oreg, WEST Easton. Pa WHGB Harflsburg, Pa. WKBI St. Marys, Pa WICK Seranton. Pa. WRAK Williams port, WCOS Columbla, S.C. WGTN Georgetown, S.C. WIZA Clarksvilie. S.C WHUB Cookeville, Tenn WLSB Copper HIil. Tenn. WHAL Shelbyyille Tenn KRUN Ballinger, Tex. KBYG Bid Spring, Tox. KUND Corpus Christi. Tex. KGVL Greenville. Tex. KEBE lacksonville. Tox. KIUN Pecos. Tex.
KVOP Plainview. ex KDWT Stamford, Tex. KTEM Temple, Te KTFS Texarkana, Tex.
KYOU Uvalde. Tex. KIXX Provo. Utah WDOT Burlington, Vt. WHAV HIlsville. Va. WHIH Portsmouth, Va. WINC Winchester, $V a$. KEDO Longllew, Wash
KRSC Othello, Wash. KTNT Tacoma, Wash
WBOY Clarkesburg. W.Va. WRON Ronceverte, W.V WKWK Wheeling, W.Va WBTH Willamson, w.Va. WATW Ashland, Wis. WDUZ Green Bay Wis, WRDE Reedsburg. Wiss WRIG Wausau, Wis. KATI Caspar, Wyo
KODI Cody, Wyo.

## 1410-212.6

CFUN Vancouver, B.C. WALA KTCS Fort Smith, Ark
KERN Bakersfield, Calif. KRML Carmel. Calif. KMYC Marysvilie. Calif. KCAL Redlands, Calif. KCOL FI. Collins, Colo WPOP Hartford. Co WMYR Fort Myers, Fia. WBIL Lesturg, Fla. WSNE Cumminas. WLAQ Rome. Ga. WRMN EIOIn. II WTIM Taylorville, III. KLEM Grinnell, lowa KLEM LeMars. Iowa KWBB Wichita, Kans. WLBJ Bowling Green, Ky. WHLN Harlan. KY. KOBS Alexaniria. La. KLFD Litchfield, Minn WDSK Cleveland M iss WBKN Newton. Miss.
WHTG Eatontown. N, J WDOE Dunkirk, N WSET Glon Fals. N.Y. WEGO Concord, N.C. WSRC Durham. N.C KPAM Portland. Oreg. WLSH Lansford, Pa. KQV PIttsburgh. Pa WYMB Manning. S.c. WCMT Martin. Tenn.
KBUD Athens, Tex
KBAN Bowie, Tex.





,
W.P. Ke. Wove Length 250 KVLB Cleveland, TeX. 1000 KXIT Dathart, Tex. 250 KRIG Odessa. Tex $\begin{array}{r}250 \\ 1000 \\ 250 \\ \hline\end{array}$ KBAL San Saba, Tex,
KNAL Vietorla. Tex. WRIS Roanoke, Va. WKBH LaCrosse, Wls. $1420-211.1$
CKPT Peterborough, Ont. WMT Chicoutimi, Que, WACT Tuscaloosa. Ala.
KHFH Slerra Vista, Ariz.
KPOC Pocahotas. Ark KPOC Pocahontas. Art
KSTN Stockton, Callf. WLIS old Saybrook, Con WBRD Bradenton, Fla WOBF Delray Baach, Fla.
WSTN St. Ausustine, Fla. WSTN St. Ausustine, Fla.
WRFB Tallanassee, Fla.
WAVO Avondale Estates, Ga 1000
1000

## 1000 250

 $\begin{array}{r}100 \\ 25 \\ \hline\end{array}$ WPEH Louisville, Ga. WLET Toccoa, Ga. WINI Murnhysboro, ill.WiMS Michigan City, Ind. WOC Davenport. lowa 250
250
250 $250 \underset{ }{\mathbf{W}} \mathbf{W}$ WHBN Harrodsburg, Ky. KPEL Lafayette, La. WOKW Brockton. Mass. WBEC Plttsfeld M, Mass. WAMM Flint. Mich. WKPR Kalamazoo, Mleh. KTOE Mankato. Minn. WSUH Oxford, Miss. 250
1000 1000
250
250
1000
1000
250
250
1000
250
1000
250
250
1000
1000
1000
250
250
250
250
250
1000 KSYX Santa Rosa, N. Mex. 10000
10000 1000
500
500
${ }^{\substack{\text { s.and } \\ \text { and } \\ \text { and }}}$

## $1000 d$ 1000 5000

5000
5000 K K B M M Montlcello, Ark.
KAM El Centro. Callif.
1000 K KALI Pasadena, Callf.
000d KOSI Aurora, Colo.
000d WSDB Homestead, Fla.
1000 d
1000
WPAK Lakeland, Fla.
WPF Panama City, Fia.

| 500 d | WGFS Covington, G |
| ---: | ---: |
| 1000 d | WRCD Dalton, Ga, |
| 1000 d | WWGS TIfton, Ga, |
| 500 d | WCMY Ottawa, II. |

1000 d WiRE Indianapolis, ind.

| 5000 |
| ---: |
| 5000 |
| 5000 d | WNAV Morgan City, La.

1000 d
500 d
F WRBE Mt. Clemens, Mich.
WLA Laurel, Miss. 500 d
1000 d KADL Carroliton, Mo.

| $1000 d$ |
| ---: |
| $500 d$ |
| $500 d$ | KIL St. Louls, Mo.

500
1000 WGJR Newark. N.J.
1000 d WENE Endicott, N.Y.
1000 d
1000 d
WDJS ML Ollve, N.C.

| 1000 d |  |
| ---: | ---: |
| 5000 | WRXO Roxboro, N.C. |
| WF Fostoris. Dhlo |  |

5000 d WCLT Newark, Ohlo
5000 d KALV Alva, Okla.
5000 KTUL Tulsa, Okla.
1000 d
1000 d
1000 d
WVAM Saltom, Oreg.
WFRA Franklin. Pa,
1000d WFRA Franklin. Pa.
1000 d
500 d

$W . P$.
500
500 d
500
1000
500 d
500
5000 d
5000
1000
合 WE
$W H$
$K S T$
$K E$
$K C$
$K L$
$W O$
$W D$
$K B$
$W E$
$W B$
14 Weve Length
END Madison, Tenn.
HER Memphis, Tenn.
STB Brackenridge, Tex.
EES Gladewater, Tex.
COH Houston. Tex.
LO Ogden, Utah
OYL Ashfand, Va.
DIC Clincho, Va.
aRC Mt, Vernon. Wash.
EIR Weirton, W.Va.
W.P.|Ke. Wave Length W.P j000d WXVW Jeflersonville, ind. .9
250 1000
100
10
5
10
10
1

1 | 1000 |
| ---: |
| 5000 d |
| 1000 d |
| 1000 C |
| 5000 |
| W |
| 500 K |
| 1000 |
| 500 |
| 5000 |
| 1000 K |
| 5000 K |
| 1000 K |
| 50 |
| 5000 |
| 1000 W | W . 5

## 5000 d 5000 <br> $1000 d$ $5000 d$ <br> 3000 d 1000 d

1000
1000
1000 d
5000

5000
1000 d
$1000 d$
1000
$500 d$
$1000 d$

## 1000 d

## $\begin{array}{r}1000 \mathrm{~d} \\ 500 \\ \hline\end{array}$ <br> 000 d W

## 00 K

## 0

5000
1000 d
훙융융WASK Lafayefte, Ind,
WAOV Vincennes, Ind.KPIG Cedar Rapids, lowa
KWEW Hutchinson, Kans,$\begin{array}{r}250 \\ \begin{array}{r}2550 \\ 250 \\ 250\end{array} \\ \hline\end{array}$ $\begin{array}{ll}\text { WTCD Campbelisvilie, Ky. } & 250 \\ \text { WWXL Manchester, Ky. } & 250\end{array}$ WWXL Manchester, Ky. 250
WPAD Paducah. Ky. KSIG Crowley, La. KNOC Natchitoches, La. WRKD Rockland, Malne WKTQ South Paris, Maine WTBO Cumberland, Md. WATZ Alpena Townshio. Mich 1000 WATZ Alpena Township. Mish. 250 Wmio Iron min Mich. WIBM Jackson, mbeh. WKLA Ludington. Mieh WHLS Port Huron, Mleh. KBUN Bemidj Minn. KBUN Bemidji, Mlinn KBMW Breckenrldge, Minn, 250
WELY Ely, Minn. KFAM St, Cloud, Minn. WROX Clarksdals, Miss
WCIU Columbia, Miss. WJXN Jackson, Miss. WOKK Meridian, Miss. WNAT Natchez. Mliss. WROB West Point. M KIRX Kirksville, Mo KOKO Warrensburg, Mo.
KWPM West'Plains, Mo KXXL Bozeman, Alont. KUDI Great Falls. Mon KREN Red Lodge, Mont KVCK Wolf Point, Mont
KWBE Beatrice, Nebr. KCSR Chadron. Nebr. KONE Reno, Nev.
WKXL Concord, N. WFPG Atlantic City, N.J. WCTC New Brunswick, N.J. KLMX Ciayton. N.Mez. KOBE Las Cruces, N.Mex.
KENM Portales. N. Mex WCLi Corning. N., WWSC Glen Falls, N. Y
WHDL Olean, N.Y. WKIP Pouphkeepsie. N.Y. WKAL Rome. N.Y.

1000 d
1000 d
1000 d
5000 d
$250 d$
1000
1000
$1000 d$
$1000 d$
$1000 d$
$1000 d$
$1000 d$
5000 d
1000 d
5000
500 d


## CFBM Brochet. Man

CBG Gander. Nild.
CFAB WIndior, N, S. CFJR Brockville, Ont.
CHEF Granby, P, WDNG Anniston, Ala.
WYAM Bessemer, Ala.10000
1000 d
1000 d1000 d
1000 d$1000 d$
1000 d
5000
w
wAlabs,
KLAM Cordova, AlaskaKAWT Douglas. Ariz.KNOT Prescott, Ariz.
KOLD Tucson, Ariz.KOLO Tucson. ArizKENA Mena, Ark.
KYOR Blythe, Cailt.KOWN Escondido. Callf.KOWN Escondido. Callf.
KPAL Palm Springs, Cailf.KTIP Portervilie. Calif.KVML Sonora. Callf.KYEN Ventura. Calif.KAGR Yuba City, Calif
KGIW Alamosa, Colo.KGIW Alamosa, ColoWNAB Brldgeport, Conn.WILM Wilmington, DelWWJB Brooksville, FlaWMFJ Daytona Beach, Fla.WSKP Miaml. Fla,WESR Pensecola, Fla
WSPB Saracota, Fla,WSTU Stuart. Fla.5000d WSTU Stuart. Fla.
Fia.WGPC Albany.WGPC Albany, Ga.W
5000
Ga,WBYG Savannah. Ga.WVLD Valdosta, Ga.KEOK Payette. Idaho
KEEP Twin Falls, IdaheKEEP Twin Falls, Idah
WHFC Clcero, III.

100
250
250
1000
1000
1000
1000
1000
250WOAD Indlana, Pa,WMPT So. WIlliamsnort, Pa. WGNC Gastonia. N.C WHYH Henderson, N.C.
WHKP Hendersonville, N.C. WHIT Now Bern. N.C. KGCA Rugby, N. Oat WMOH Hamilton. Onlo WLEC Sandusky, onio KWHW Altus. Okla.
KGFF Shawnee. Ok KGFF Shawnee. Okla,
KSIW Woodward. Okla. 250 WCRS Greenwood. S.C. WHSC Hartsville, S.C.
KBFS Belle Fourehe, S.Dak. S.C.
S.Dak. 1000
1000
1000 KBFS Beltw FYNT Yankton. S.Dat. Dak. 2 WLAR Athens, Tenn. WMOC Chattanooga, Tenn. WDSG Dyersburg. Tenn.
WSMG Greenevilie, Tenn. WSMG Greenevile, Tenn.
WLAF LaF ollette, Tenn. WGAS Murfrestoro. Tenn. 100 KRIC Beaumont, Tox.
KBEN Carfizo Spros., Tex. KCTI Gonzales. Tex. KMBL Junction, Tex. KCYL Lampasas. Tex.
KMHT Marshalf, Tex. KMHY Marshall, Tex. KNET Palestine, Tex. KSNY Snyder, Tox.
KURA Moab, Utah KURA Moab, Utah
KEYY Provo. Utah $\begin{array}{lr}\text { KDXU St. George, Utah } & 250 \\ \text { WSNO Barre, Vt. } & 1000 \\ \text { WTSA Brat } & 1000\end{array}$ WTSA 8rattieboro, Vt. 100
WFTR Front Royal. Va.
WENZ Mlohland Springs. Va. 250 WRCO Richiand Center, Wis.

WREL Lexington. Va,
WMVA Martinsville. Va.
KBKW Aberdeen. Wash. KCLX Colfax, Wash. KONP Port Andeles. WPAR Parkersburg W Va KFIZ Fond du Lac. Wis. WDLB Marshfield, Wis

万inNN
8 OHGN
10

250 KONP Port Andoles. Wash.
250
250
250
1000
100
100
250


WBOF Virginla Beach, Va, 5000 d
KOQT Bellingham, Wash.
1560-192.3
CFRS Simeoe, Ont. KIQS Willows, Callt. KSW Cound Blo KSW Council Bluffs, Lowa WQXR Now York WTNS Coshocton. Ohio WTOD Toledo, Onlo KWCO Chickasha. okla. KCAD Abyamon, P.R. KHBR Millene, Tex. KGUL Port Laverax.
1570-191.1
CHUB Nanaimo, B.C.
CFRY Portage Ja Prairie CFOR Orilila, Ont, Man
WCRL Oneonta, Ala.
WRWJ Solma, Ala. KBRI Brinkley. Ark.
KBJT Fordyce, Ark. KRKC King clty, Calif. KCYR Lodi, Calif. KACE Riverside, Calif. KLOV Loveland, Colo. WTWB Auburndate, Fia.
WJOE Ward RIdge, Floria. WMES Ashburn, Ga. WGHC Clayton, Ga. WEAO Collepo Park, Ga. WGSR Mllen, Ga,
WOKZ Alton, III. WFRL Freeport, ill. WBEE Harvey, Ill. WTAY Robinson, Ill.
WILO Frankfort. Ind. WAWK Kendallville. Ind. WOWI Now Albany, Ind. KMCD Fairfield, lowa KNDY Marysville Kans. KWSK Pratt, Kans. WKKS Vanceburg, WABL Amlte. La. KMAR Winnsboro, La. WAQE Towson. Md. WPEP Taunton, Mass. WMLO Beverly, Mass. WMRP FiJnt. MJeh. WFUR Grand Rapids KUXL Golden Valley. Min 1000 d KMRS Morris, Minn. Mlnn. 500 d WONA WInORA. Miss. KLEX Lexington, Mo WAFS Amsterdam, N. $Y$ WFLR Dundee, N.'Y. WBUZ Fredonla. N.Y. WAPC Riverhead, $\mathbf{N} . \dot{Y}$ WNCA Siler City, N.C. wCLw Mansfeld Ohis WPTW Mansfield, Ohio KTAT Fraderiek, Okia. KOLS Pryor, Okla.

Kic. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P.|Kc. Wave Length W.P Cailf anitoba

250 d
10000
250 d
250 d
1000 d
1000
50000
1000 d
5000 d
1000
250
500 d
250 d
500 d

Kc. Wave Length W.P.|Kc. Wave Length KGGG Forest Grove, Oreg. KOHU Hermiston, Oron. WSHE Oylestown. Pa WFGN Ganney, S.C. W JES Johnston. S.C. WLSC Loris. S.C WHLP Centervilie, Tenn, WCLE Cleveland. Tenn WTRB Ripley. Tenn.
KZOL Farweli. Tex. KYLG La Grange, Tex. KTER Terrell. Tex KWIC Salt Lake City, Utah WYTI ROcky Mount, v, V. 1000 d WEER Warrenton. W.V. WAPL Apoleton, Wis, 1580-189.2

## j000d

1000d WORG Oranpeburg, S.C.
WYCL York. S.C. WYCL York. S.C. d WLIJ Shelbyville, Tenn.
lo00d KGAF Gainesville, Tex
1000 K KIRT Mission, Tex.l000d KTLU Rusk. Tex.KWED Soguin, Tex.
KBYP Shamrock. Tex
WILA Danville, Va.
WPUV Pulaski, Va.
WPUV Pulaski, Va.
WTTN Watertown. wis.
$1590-188.7$
1

        dWATM Atnore, Ala.WATM Atnore, Ala.
    WVNA Tuseumbla, Ala.
KPBA PIne Bluff. Ark.KLiV.San Jose, Calif.
KUOU Van Jose, Calif.
KUOU Ventura, Calif.
KCIN Victorville, Calif,
1000 K
10000 d KCI Victorville, Calft,
WBY Watertury, Conn.
WBRY Waterbury, Conn.
WOWY Clewiston, Fla.d

## 10000

## $250 d$ 10000

 CBJ Chicoutimi. Que. WJHB Talladega, Ala. KYND Tempe, Ariz. KPCA Marked Tree, Ark. KFDF Van Buren. Ark. KPON Anderson. Calit KWIP Merced, Callf. 250 d250 d 250d
$\begin{array}{lr}\text { KOAY Sarced, Callif. } & 500 \mathrm{~d} \\ \text { KHUM Monita, Cal. } & 50000 \mathrm{~d} \\ \text { KHUAT Rosa. }\end{array}$
KHUM Santa Rosa, Calif. $\begin{aligned} 500 d\end{aligned}$
.
  a 1000 d 10200 1000 d 1000 d 1000 d 250d 1000 d 5000d 5000 d
1000 d $1000 d$
$250 d$ $250 d$
$250 d$ 250 d 000d 000 d 250 d
250 d 250 d
250 d <br> \section*{50d <br> \section*{50d <br> 500d}Ke. Wave Len
Ten.

            AWA West Allis, Wis.
    
            1000 d
    1000 d
1000
$500 d$
1000
$500 d$ 1000 d
250 d Luray, $V$ a
Richmond
Seattle. W Luray, $V$ a
Richmond
Seattle. W Va.
sh. Va.
sh. 50000 d
5000 d 50000 d
5000 d
WE
KT
$W I$
$W S$
$W$
$W$
$K$
$W$ 
KPIK Colorado Spros., Colo. 5000d
WWIL Ft. Lauderdale, Fla. 10000
WGRC Green Cove Springs.
WGRC Green Cove Sormgs.
WMDF Mount Dora. Florida 500 d
What
WCCF Punta Gorda. Fla. 1000 d
WCLS Columbus. Ga.
WPFE Eastman, Ga.
WLBA Gainesvifle, Ga
WKIG Glenville, Ga.
WKKO Aurora, III.
WOQN OuQuoln, lil.
WBBA Pittsfield. III.
WKID Urbana, III.
WCNB Connersvilie, Ind.
WJVA South Bend, Ind.
WAMW Washlngton, Ind.
KCHA Charles City, Iowa
KWNT Davenport, Jowa
KOSN Denison, Iowa
WAXU Georgetown, $K y$.
WMTL Leltchfield, $K y$.$5000{ }_{d}$
$5000 d_{d}$$5000 d$
$5000 d$1000 d
5000
Bnn.
Beach
250d
000d
WIOWY Clewiston, Fla.
WIL Petersburg Beath.
500 d
5000
500 d
WELE S. Daytona Bch.,
Od dWALG Albany, Ga.
WLFA Lafayette, Ga.
Ja. 10

1000
50000
5000WTGA Thomaston, Ga.WAIK Galesburg. 111.1000d WPEE Indianapolis, Ind.
Wt. Vernon. Ind.KWBG Boone, IowaKVGB Great Bend, Kans.
500 d
5000 d
0d
d
W
KEVL White Castle, La.
WETT Ocean Clty, Md.
WTVE Coldwater, Mlsh.
WOOG Marine City, Mich.500 d
1000 d
5000
WOOG Marine City, mi
WMiC St. Helen. Mleh.5000 d
5000 dnd.Ga.
Od0d
Kd KP
KDEX Dexter, Mo.
KPRS Kans.MInn. 1000 dKPRS Kansas Clty, mo.
KCLU Rolla500d KCLS Ransas Clity
500d WSM Rolla. Mo.WPKY Peltchfield, Ky.
KLUV Hayneton, Ky.10000 d0d WE
Woda.KLOU Lake Charles, La,
WPGC Bradbury Hots.. Md.
WOWE Allegan. Mich.$250 d$
10001000
1000 d
WJUD St. Johns, Mich.
KDOM WIndom, MInn.1000
1000010000
$250 d$WAMY Amory. Miss.WGLC Centreville, Mis$1000 d$
$250 d$WGLC Centreville, MIs5000d
WESY Leland, MIIss.WKCGM Point, MississioplKCGM Columbia. Mo.ioni 1250 d
10000
1000 d

250 d| 250 d | KRAV Washington, N.J. | 500 d |
| :--- | :--- | :--- |200d KRAZ Aibuquerque, N.Mex. 1000 d000d WPAC Patchogue, N. Y. Mex. 1000 d

000d WPAC Patchogue, N.Y. lo000dlo00d WZKY Albemarie, N.C.1000 d WPYB Benson, N.C.1000
250 d
250 d250 d WCOY Columbia, OkIaJ000d WEND Ebensburg. Pa.
$250 d$500 d500 d
1000 d$1000 d$
$250 d$$250 d$
$500 d$500d
SMN Nashua.
Mo.
1000 d
500 d
1000
1600-187,5
CHVC Niagara Falls, Ont.
$\begin{array}{ll}\text { WAPX Montgomery, Aia. } & 1000\end{array}$
KGST Monteomery, Aia. 1000
$\begin{array}{lr}\text { KGST Fresno. Callif. } & 1000 \mathrm{~d} \\ \text { KWOW Pomona, Calit. } & 1000\end{array}$
$\begin{array}{ll}\text { KWOW Pomona, Calift. } & 1000 \\ \text { KUBA Yuba City. Calif. } & 5000\end{array}$
$\begin{array}{ll}\text { KLAK Lakewood, Colo. } & 5000 \\ \text { WKEN Dover, Del. } & 500 d\end{array}$
WKEN Dover, Del.
WKTX Atlantic Beach. Fia. 1000 d

| WKTX Atlantie Beach. Fia. 1000 d |
| :--- |
| WKWF Key West. Fla. |
| 000 |

                WKWF Key West. Fla. 500
                WHEW Riviera Beach, Fla. 1000
    WOKB Winter Garden. Fia. 10004
WOKB Winter Garden. Fla. 1000 d
WGKA Atlanta. Ga.
WGKA Atlanta. Ga.
$\begin{array}{ll}\text { WGKA Atlanta, Ga. } & \text { lo00d } \\ \text { WNGA Nashvilie, Gia. } & 1000 \mathrm{~d} \\ \text { WCGO Chicago Hgts.. ili. } & 1000 \mathrm{~d}\end{array}$
$\begin{array}{ll}\text { WNGA Nashvilie, Ga. } & \text { lo00d } \\ \text { WCGO Chicago Hgts.. ili. } 1000 \mathrm{~d} \\ \text { WHCW Harvard, Ill. } & 500 \mathrm{~d}\end{array}$
W MCW Harvard, Ill.
W8TO Linton, Ind.
WARU Peru, Ind.
WARU Peru, Ind.
KLGA Algona, Iown$\begin{array}{lr}\text { W8TO Linton, Ind. } & 500 \mathrm{~d} \\ \text { WARU Peru, Ind. } & 1000 \mathrm{~d} \\ \text { KLGA Algona, Jowa } & 5000 \mathrm{~d} \\ \text { KCRG Cedar Raplds, lowa } & 5000 \\ \text { KMDO Ft. Scott. Kans. } & 500 \mathrm{~d}\end{array}$
500 d
500 d$5000 d$
5000KMDO Ft. Scott. Kans.
WSTL Eminence Ky.500 d$\begin{array}{ll}\text { WSTL Eminence, Ky. } & 500 d \\ \text { KFNV Ferriday, La. } & 1000 \mathrm{~d}\end{array}$
SMN Nashua, N.H.
KFNV Ferriday, La.
1000 d
1000 d
KFNV Gorriday. La.
KLFT Golden Meadow. La.
KLVI Vivian, La.
WINX Rockville. Md.
1000 d
500 d
WINX Rockville. Md
WINX Rockville. Md.
WBOS Brookline, Mass.500 d
1000
1000
5000
WTYM East Longmeadow.
$\begin{array}{lrr} \\ \text { WTYM East Longmeadow, } & \\ \text { MHRY Ann Arbor, Mlish. } & 5000 \mathrm{~d} \\ \text { WHR } & 1000 \\ \text { WTRU Muskegon, Mleh. } & 5000\end{array}$
1000
5000
000

    WFFF Columbia, Miss
    
        \(500 d\)
    5000
$500 d$

    KATZ St. Louls, M
    | Location | C.L. Ke. N.A. | Locatlon C.L. Ke. N.A. | Locatlon C.L. Ke. N.A. | Locatlon C.L.Ke.N.A |
| :---: | :---: | :---: | :---: | :---: |
| Ann Arbor, Mleh. | WHRV 1600 A | W日MD 750 | C | Bow. N |
|  | WPAG 1050 WRAJ 1440 | $\begin{array}{ll} \text { WCAO } 600 \\ \text { WCBM } 680 \end{array}$ | $\text { KOYN } 910$ | Brookfield, M1. KGHM 1470 |
| n, Ala. | WANA 1490 | WFBR 1300 | Binghamton. N.Y. WINR 680 N | WJMB 1340 |
|  | WONG 1450 A | WITH 1230 | WKOP 1360 M | Grookings, Ores. KURY 910 |
|  | WHMA 1390 KANO 1470 |  | Birmingham. Als, WNBF 1290 C | Brookings, S. Dak. KBRK <br> Brookline, Mass. <br> WBOS <br> 1600 |
| ka | WADS 690 | WWBD 790 | Birmingham, Ala. W'AHM 1550 | Brooksvilie, Fla. WWJB 1450 |
| Antigo | WATK 900 | Bangor, Maing WABI $910 \mathrm{~A}-\mathrm{M}$ | WBRC 960 A | Brownfiold, Tex. KTFY 300 |
| Antlionish, | CJFX 580 | WGUY 1250 C | 1260 A | Brownsvilla, Tex. KBOR 1600 |
| Apollo | WAVL 910 | WLBZ 620 N | 220 | Brownwood, Tex. KBWD 1380 |
| Apple Valley, | KAVA 960 | Banning, Calit KPAS 1490 | 1320 M | KEAN 1240 |
| Appleton, wis. | WAPL 1570 | Barboursville, Ky. WBVL 950 | WATV 900 | Brunswick, Ga. WGIG 1440 |
|  | WHBY 1230 M | Bardstown, Ky. WBRT 1320 | 610 | WMOQ 149 |
|  | WRAB 1380 | Barnesboro, Pa. WNCC 950 | 850 | lck, Maine WCME 900 |
| Arcadla, Fla, | WAPG 1480 | Barnwell S.C. WBAW 740 | Wisheen WVOK 690 | Bryan, Tex, KORA 1240 M |
| Areata, Callf. Ardmore, Okla | KENL 1340 | Barre, Vt. WSNO 1450 <br> Barrie, Ont. CKBB 950 | Bisbee, Arly, KSUN 1230 A | Buckhannon, w.Va. WTAWC 1150 |
| Ardmore, Oki | KVSO 1240 A |  |  | Buckhannon, W.Va. WBUC 1460 Bufialo, N.Y. WBEN 950 C |
|  | $\text { WMIA } 1070$ | K 10 T 1310 | Bismarck. N.Dak KFYR 550 N |  |
|  | WNIK 1230 | Bartlesvilla, Okla. KWON 1400 |  | WEBR 970 M |
| Arkadelphla, Ark. | KVRC 1240 M |  | Bismarck.Mandan. N. Dak. | WGR 550 N |
| Arkan. City kans. | - KSOM ${ }^{\text {WaTY }} 1220$ | Basseft, Va. KOTMY 730 | KB | $\begin{aligned} & \text { WKBW } \\ & \text { WWOL } \\ & \hline 120 \end{aligned}$ |
| Arlington, | WAVA 780 | KVOB 1340 | MT 1350 | Buffalo, Wyo. KBBS 1450 |
|  |  | Batavia. N.Y. WBTA 1490 M | B1 |  |
| Artesia, N.M. | KSVP 990 | Batesbura, S.C. WBLR 1430 | Blackfoot Idaho KBL | Burbank, Calif. KBLA 1500 |
| Arvada, Colo, | DAB 1550 | Batesville. Ark. KBTA 1340 | Blackfoof, Idaho KBLI 690 Blackshear, Ga. WBSG 1350 |  |
| Ashburn, ${ }^{\text {Asbury }}$ Park, | WMES 1570 | Batesvilla, Miss. WBLE 1290 Bath, Maino WMMS 730 | Blackshear, Ga. WBSG 1350 Blackstone, Va. WKLV 1440 | Burinston, lowa KBUR 490 A |
| heb | WGWR 1260 | Bathurst, N.B. CKBC 1400 | Blackwell. Okla. KLTR 1580 | WBAG 1150 |
|  | WISE 1310 | Baton Roupe. Ls. WAIL 1460 M | Blaine, Wash. KARI 550 | Burlington, Vt. WCAX 620 |
|  | $1380 \mathrm{~N} . \mathrm{M}$ - | Baton Rouge, La. WUNE 1550 | Blakely, Ga. WBBK 1260 Blanding, Utah KUTA 790 | $\begin{aligned} & \text { WDOT } 1400 \\ & \text { WJOY } 1230 \end{aligned}$ |
|  | WWNC ${ }_{570} \mathrm{C}$ | IBR 1300 | Blind River, Ont. CJNR 730 | Burnett, Tex. KTSL 1340 |
| Ashland, Ky. | WCM11 1340 | 1150 N | Bloomington, lil. WJBC 2330 A | Burns, Orea. KRNS 1230 |
|  | 20 |  | A |  |
| Ashiand, Ohio | WNCO 1340 | WXOK 1260 | Bloomsburg. Pa. WCNR 930 | 050 |
| Ashland, Oreg. | KWIN 1400 M | Battie Creok. Mleh. WBCK 930 | 550 370 | WISR 680 KBOW 1490 |
|  | WDYL 1430 | WHAB 1260 | Bluefild, W.Va. Whis 1440 N | Butte, Mont. KOPR 550 |
| A | WATW 1400 | WBCM $W W$ W W W |  | KXLF 1370 N |
| Ashtabula, Oht | WREO 970 | Bay City, Tex. WWBC 1250 |  |  |
| , Orag. | KAST <br> KIAL <br> 1230 | Bay minette. Ala. WBCA 1150 | Blythevile, Ark. WAVC 1300 Boaz, Ala. | Cadillat, Mich. WATT 1240 M Caguas, P.R. WNEL 1430 |
| Atehlson, Kans. | KARE 1470 | Bayamon, P.R. WRSJ 1560 | Bogalusa, Le. WIKC 1490 N | VJP 1110 |
| Athens, Ala. | WJMW 730 | Baytown, Tex. KWBA 1360 | 920 | WGRA 790 |
| Athens, Ga. | WGAU 1340 C | Beacon, N.Y. WBNR 1260 | Boise, Idaho KATN 1010 | Cairo. $111 . \quad$ WKRO 1490 |
|  | WDOL 1470 | Beardstown, III. WRMS 790 | Boise, Idaho KBOI 950 C |  |
|  | WRFC | Beatrice, Nobr. KWBE 1450 | 790 | Caldwell, Idato KCLD ${ }^{\text {KRGN }} 1490$ |
| Athens, |  | Beaufort, S.C. WBEU 960 | KIDO 630 N | Calera, Ala. WBYE 1370 |
| \%ns | WLAR 1450 M | Beaumont, Tex. KFDM 560 A | KYME 740 | Calexieo, Calif. KICO 1490 |
| Athens. Tex. | KBUD 1410 | KJET 1380 | KFYN 1420 | Calgary. Alta. CFAC 960 |
| Atlanta, Ga. | WPLO 590 C |  | Boone, lowa KFGQ 1260 |  |
|  |  | 990 | WBG 1590 | CKXL 140 |
|  | W AOK 1380 | Beaver Dam. Wis. WBEV 1430 | 1450 | CGA 900 |
|  | WERD ${ }^{860}$ |  |  | Cambrige, Md. WCEM 1240 |
|  | WGKA 1600 | WWNR 620 | Booneville, Miss. WBIP 1400 A | Cambridge, Ohio WILE 1270 |
|  | WJIN 970 | Bodford, Ind. WBIW 1340 | Boonville, N.Y. WBRV 900 | Camden. Ark. KAMD 910 |
|  | Waxi 790 | Bodtord, Pa. WBFD 1310 | Borger, Tex. KHUZ 1490 m | Camden. N.t. WCAM 1910 |
|  | WSE 750 N | Bediord, Va. WBLT 1950 | 0 | 800 |
|  | WYZE 1480 m | Beeville. Tex. KiBL 1490 | Baston, Mass. WEZ 1030 | WACA 1590 |
| Atlanta, Tex | KALT 900 | Belen, N. Mex, KARS 860 | COP 1150 | Camden. Tenn. WFWL 1220 |
| Atlantic, ${ }^{\text {cowa }}$ | KJAN 1220 | Belorade, Mont. KGVW 630 | 090 680 | Cameron. Tox. KMIL 1330 |
| Atlantic Beach, Fla. | WFPA | Bellaire. Ohio WOMP 1290 M | $\begin{aligned} & \text { WNAC }{ }^{680} \\ & \text { WEZE } 1260 \end{aligned}$ | Camilla, Ga, WCLB 1220 |
| Atlantic City, N.J. | WFPG 1450 C | Bellefontaine, onio WOHP 1390 Bellefonte. P3. WBLF 1330 | WEZE 1260 N | Campbell, Ohio WHOT 1570 |
|  | WLDB 1490 M | Bell Fourcho, S. Dako KBFS 1450 | $\begin{aligned} & 590 \\ & \text { HDH } \\ & \hline \end{aligned}$ | Campbollsville, Ky. WTCO 1450 Campbellion. N.B. CKNB 950 |
| Atmors, | WATM 1590 | Bello Glade, Fla. WSWN 900 | WMEX 1510 |  |
| Attleboro. | WARA 1320 | Belleville, Ont. CJBQ 800 | WORL 950 M | Canon City, Colo. KRLN 1400 |
| Auburn. | WAUD 1230 A | Belleville, IIII. WIBV 1260 | Boulder, Colo. KBOL 1490 | Canonsburo. Pam WARO 540 |
| Auburn. Calif. | KAHI 950 | Bellevue, Wash, KFKFF 1930 | Bowle, Tox. <br> KBAN 1410 | Canton, Ga. WCHK 1290 |
| Auburn, N.Y. | WMBO 1340 | $\text { Bellingham, Wash. KPUG } 1170 \text { m }$ | Bowing Green, Ky. WKCT 1330 A | Canton, 111  <br> Canton, Miss. WBYS 1560 <br> WOOB 1370  |
|  | KASY 1220 | KGMI 790 A | WLBI 1410 m | Canton, N.C. WWIT 970 |
|  | WTWB 1570 | KOQT I550 | Bowl. Green, Ohio WMGS 730 | Canton, Ohlo - WCNS 900 |
| Auburndale, Wis. | WLBL 930 | e, Was | Bozeman, Mont. KXXL 1450 N | WHOF 1060 |
| Augusta. Ca | WAUG 1050 |  |  | WHEC ${ }^{\text {WHFS }} 1480$ |
|  |  | Beloit, Wis. <br> WGEZ 1490 M | Braddock. Pa. WLOA 1550 | KGMO 1550 |
|  | WGAC 580 | Belton, S.C. WHPB 1390 | Braddocks Hoights, Md. | WCIL 1020 |
|  | WRDW 1480 | Belton, Tsx. KTON 940 | Bradenton FIO WMHI 1370 | Carbondalo. Pa. WCDL 1440 |
| Augusta, Maine | WRDO 1400 | Belzoni, Miss. WELZ 1460 | Bradenton, Fla. WTRL 1490 | Caribou, Malne WFST 600 |
|  | WFAU 1340 M | $\begin{array}{ll}\text { Bemid, } \\ \text { Bend, Orses. } & \text { KBND } \\ \text { KBN }\end{array}$ | Bradford, Pa. WESB 1490 | Carlsbad. N. Mox KAYE 1240 |
| Aurera, III. | MRO 1280 | KGRL 940 | Brady. Tex. KNEL 1490 | KPBM 740 |
|  | WKKD 1580 | Bennetsville, S.C. WBSC 1550 M | Bralnerd, Minn. KLIz 1380 | Carmel, Calif. KRML 1410 |
| Austin, Minn. | KAUS 14800 M | Bennington, Vt. WBTN 1370 | Brampton, Ont Brandon, Man |  |
|  | KAAQ 970 | Benson, MIInn. KBMO 1290 | Brandon, Man, CKX 1150 Branson, Mo |  |
| Austin. Tox | KNOW ${ }_{\text {KASE }} 14900$ | Benson, N.C. WPYB | Branson, Mo. KBHM  <br> Brantford, Ont. CKPC 1380 | Carrington, N.Dak. KDAK 1600 Carrizo Springs, Tex. KBEN 1450 |
|  | KASE 970 | Benton. Ark. KBBA 690 <br> Benton, Ky. WCBL 1290 | Brattleboro, Vt. WTSA 1450 N | Carroll, lowa <br> KCIM 1380 |
|  | KTBC KOKE 1370 | Benton Harbor, MIch.WHFB 1060 | WKVT 1490 | Carrolition, Ala. WRAG 590 |
|  | KVET 1300 M | Berkeloy, Callf. KRE 1400 | Brawley, Calif. KROP 1300 A | Carrollton, Ga. WLBB 1100 |
|  | KBIG 740 | W.Va | Brazll, ind. WITE 1380 | Carroilton, Mo. KAOL 1430 |
| Avon Park, Fia. | W AVP 1390 | WC | Breckenridge. Minn. KBMW 1450 | Carson City, Nov. KPTL 1300 |
| Avondale Estate | a. WAVO 14 | Berlin. N.H. WMOU 1230 | Breckenridge, Tex. KSTB 1430 | Cartersville, Ga. WBHF 1450 |
| Aztec, N. Mex. | KNDE 1340 | Berry Hill, Tenn. WVOL 1470 | Bromen, Ga, WWCC 1440 | Cartersville, Ga. WKRW 1270 |
| B | WBAB 1440 |  | Bremerton, Wash. KBRO1490 Brenham. Tex. KWHI S | Carthage, Carthage, Mo. WCAZ 1090 |
| , Mich. | WLEW 1340 | Bossemer, Ala. WYAN 1450 | Brevard, N.C. WPNF 1240 M.N | Carthage. Tenn. WRKM 1350 |
| Bainbridge, Ga. | WMGR 930 | Bethesda, Md. WUST 1120 | Brewton, Ala. WEBJ 1240 M | Carthage, Tex. KGAS 1590 |
|  | WAZA 1360 | Bethlohem, Pa, WGPA 1100 | Bridgeport. Ala. WETS 1480 | Caruthersville. Mo. KCAV 1370 |
| Baker, Ores. | KBKR 1490 | Beverly, Mass. WMLO 1570 | Bridgeport, Conn. WICC 600 M | Casa Grande, Ariz. KPIN 1260 |
| Bakersfield, Calli. | . KAFY 550 M | Biddeford. Maine W10E 1400 M |  | Casper, Wyo. KTWO 1470 |
|  | KBIS 970 | Big Delta, Alaska WXLL 980 |  | KATI 1400 |
|  | KERN 1410 | BIg Lake. Tex. KBLT 1290 |  | WCAY 6230 |
|  | KGEE 1230 | Blg Raplds. Mich. WBRN 1460 | Briohton. Colo. KBRN 800 | WCAY KSUB 590 |
|  | K | Blg Sprg., Tex. KBST 1490 A | Brinkley, Ark. KBRI 1570 | Codar Clar Falls, lowa KCFI 1250 |
|  | KWAC 1490 | 1270 | Bristol, Conn. WBIS 1440 | Cedar Raplds, Jowa KCRG 1600 of |
|  | KPMC 1560 A |  | Bristol. Tonn. WOPI 1490 N | KHAK 1360 |
| Bellingham, Wash. | G 1170 M | Biloxi. MIss. WLOX 1490 | WFHG 980 M | KPIG 1450 |
|  | WSEN 1050 |  |  | WMT 600 |
| Baltimore, Md. Baltimore, Md. | WBAL 1090 N WMEW 940 | Billlnas, Mont.KBMY <br>  <br> KGHL <br> 1240 M <br> 790 N | Brockton. Mass. WOKW 1410 Breckvilis, Ont |  |


| Location | C．L．Ke．N． | ation | C．L．Ke． | C．L．Ke．N． | Location | C．L．Ke，N．A． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dartown，Ga， nter，Ala． | 990 |  |  | II．Tenn．wLSB |  | $\text { WSOY } 1940$ |
| ter，Tex | KDET 930 | M1ss． | WROX 1450 M |  | \％a | KWEC 1240 |
| terrille，lowa | KCOG 1400 | Clarksville，Ar | KLYA 1960 | WVCG 1070 |  |  |
| Centerville，Tenn． Centerville，Utah | WHLP 1570 | Clarksville，Ten | WJZM 1400 M WOXN 540 |  |  |  |
| Central city． Ky ． | WNES 1050 | Clarksville．Tex． | KCAR 1350 | Cordete，Ga．WMJM 1490 M |  |  |
| Centralla，III． | WMTA 1380 WCNT 1210 | $\stackrel{C}{C}$ | WCLA 1470 |  | Oe Kalb，lli， De Land，Fla． |  |
| Centralla \＆Chehall |  | Claytoñ，Mo． | KXLW 1320 |  |  | 10 |
| sh． |  |  |  | k．Nid．CECB ${ }^{790}$ | 0elano，Calif． | KCHI 1010 |
| Chadron， | KCSR 1450 |  | WCPA 900 | Corning，Ark．KCCE 1260 | Delray．Beh．，Fla． | W DBF 1420 |
| Chamb | WCHA WCBG 1590 |  | WTAN 1340 | Corning，N．Y，WCBA ${ }_{\text {WCLI }} 1450 \mathrm{~A}$ |  | KDLK KDTA K |
| Champai | WOWS 1400 | Clebur | KCLE 1120 | Cornwall，Ont．CJSS | Deming．N．Midx． | TS |
| Chanut | WCRE 1460 |  | WSLG 1340 | UUC |  | AL 1400 |
| Chapel | WCHL ${ }_{\text {WESA }} 19600$ | Cleveland，Ga． Cieveland，Mis | WRWH 1350 | kBUC |  | 硣 1220 |
| Charlos | KCHA 1580 |  | WOSK | ，кста 1030 m |  | KDSN ${ }^{\text {S }}$ |
| C | WEIC 1270 | Cleveland，Ohio | KYW 1100 | KCCT 1150 | Dento | KDNT 1440 |
| Charleston， | KCHR 1350 |  | WDOK 1260 M | KEYS 144 | Denver，Colo． |  |
| Charleston． | WCSC 1390 C |  | WERE 1300 | KRYS 1360 N |  | KFML 1390 |
|  | WPAL 730 |  | WGAR ${ }^{\text {W }}$ W 220 | KSIX 1230 A．C <br> KUNO 1400 |  | KHOW KININ 950 |
|  | S 1450 |  | WABQ 1540 | Corry，Pa．WOTR 1370 |  | 99 |
| Charleston，W | WTMA 1250 N <br> WCAW 680 | Cleveland，Tenn | WFJW 850 N |  |  | 560 710 |
|  |  |  |  | Cortland，N．Y．WKRT 920 |  | 850 |
|  | WTGRE ${ }^{\text {W }}$ W ${ }^{\text {a }}$ | Cleveland．Tex． Cleve Hots | WVLE 1410 | Corvallis，Oreg．KDAC 550 |  | 910 1220 |
|  | WTIP 1240 | Clewiston，Fila． |  |  |  | 1280 |
| Charlotte，M1ch． Chariotte， $\mathrm{N} . \mathrm{C}$ ． | WCER 1390 |  |  | Coshocton，Dhio WTNS 1560 | Dequee | KDON 1390 |
|  |  |  |  |  | Des Molnes，lowa | KDL <br> KCBC <br> 1890 <br> 1890 |
|  |  | C1 | WOIC 1430 | Councli Blufts，Iowa | Des motnes，low | K10A |
|  |  |  | WHOW 1520 |  |  | R |
|  | 240 N |  | 40 M | 1430 |  |  |
|  |  | Cilinton，M | KDKD 1280 | Covington．La，WARE 730 |  | 1040 |
|  | TA 1340 | $\stackrel{C}{\mathbf{C}}$ | WRRz KWOE K320 | Covington．Tenn．WKBL 1250 | Detrolt，Mich． | 1130 |
| Charlottesville．Va． | WCHV 1260 A | Cinnton，s．c． | WPCC 1410 | Cowan，Tonn．WZYX 1440 |  | JLB 14 |
|  | WELK 10 | Clint | WYSH 1380 | Craig．Colo．KRAI 550 |  |  |
|  | WINA 1400 M |  | WKLK 1230 | Cranbrook，B．C．C |  | WWJ 950 |
| Chase City $V$ a． | $\text { WMEK } 980$ |  | KCLV KVER 980 |  | Det |  |
| Chatham．Ont． | CFCD 630 | Co | KCHV 970 |  |  | DLM 1340 |
| ． |  | Co | KBMX 1470 | Creston，lowa KSIB 1520 | Devils Lake．N．D |  |
|  | WAPE 1370 | Coatest | WCOJ 1420 | Crestriew．Fla．WCNU 1010 |  |  |
|  | W000 1310 C | Cocoa． | WKKO ${ }^{860}$ | wSvS 800 |  |  |
|  | WDXB 1490 | Co | WRKT 1300 | Crockett．Tex．Kivy 1290 |  |  |
| Cheboygan，Mlich． | WCBY 1240 |  | KODI 1400 A |  |  | WDKN 1260 |
| ektowa | WNIA 1230 |  | KZIN | WAEW 1930 |  |  |
| ehalis．W | K1T1 | Coffe | KGGF 690 | Crowley La．KSIG 1450 M | Din | 130 |
| Chelan，wash | K021 220 |  | KXXX 790 | KCFH 1600 |  | N1970 |
| Cheraw，S．C． | WCRE 1420 | Coldwate | WTVB 1590 | Cullman，Ala．WFMH 1460 | Dodoe City，Kans， | KG |
| Cherokee．${ }^{\text {chestor }}$ | KCHE KSGM OBO | Cole | KSTA 100 |  |  |  |
| Chester，$P_{3}$ ． | WEEZ 1590 |  | KCLX ${ }_{\text {WEAD }} 14570$ | Culpeper，Va．WCVA 1490 M | Dothan，Al |  |
|  | w |  |  | 30 |  |  |
| ster．S．c． yenne，w | 10 |  | A 120 |  |  | WT ${ }^{1450}$ |
|  | 90 | Coion |  | KUS |  |  |
|  | KRAE 1480 |  | KV |  |  | WWIV 1050 |
|  | KYWO 1370 M | Colo．Spros．，Colo． | KRDO 1240 |  | Dov | 1410 |
|  | WAIT 820 |  | KYOR 13800 C | Cypress gardens，Flaw |  | 1270 |
|  | WBBM 780 C |  | KSSS 740 | Dade CIty，Fla．WDCF 135 |  | WRAN 1510 |
|  | WCFL 1000 |  | Kr | Dadeville．Ala．WDVC 910 |  | WJER 1450 |
|  | WCRW 1240 | Columbia，Ky． | WAIN 1270 | Dalhart，Tex．KXIT 1410 | Dowa | WDOW 1440 |
|  | WEOC 1240 | Columbia． | WCJU 1450 M | Dallas．N．C．WCFT 960 | Doylestown，Pa． | Wbux 1570 |
|  | WGE 720 M | Coiumbia，Mo． | ${ }^{1400}{ }^{1580}{ }^{\text {A }}$ | Dallas，Oreg．KPLK ${ }^{\text {dat }}$ |  |  |
|  | WIND ${ }^{560}$ |  | 退 | Dallas．Kex．K｜XL 1040 |  |  |
|  | WJJO 1160 | lumbia， | A | KSKY 660 | D |  |
|  | WMAQ 670 N |  | 1320 C | 570 |  |  |
|  | w |  |  | FAA 820 | Dubuque，lowa | K0 |
| go | WMPP 1470 |  | WMOCC ${ }^{1480}$ | KBPX 1480 WRR 1910 m K |  | 0 |
|  | WCGO 1600 |  | 540 | The Dalles，Oreg．KA |  | 560 |
| Chickasha．Okla． Chico，Callif． | KWCO 1560 <br> KH SL 1290 C | olumbus， |  | ${ }_{\text {M }}^{\text {A }}$ |  | KDOD KRHD K500 |
|  | K |  |  | WRCD 1430 | Dundalk，Md． | WAYE 860 |
| hicoutimi，Que． |  |  | 1580 |  | Dun | WFLB 1570 |
|  | c | um | WCSI 1010 | WITY 980 |  | WDOE 1410 |
|  | KCTX $\mathrm{KCH1} 1010$ | umbus， | W | Danvlile，Ky．WHIR 1230 |  |  |
| ilicothe，Onio | w |  |  | Danvilio．Va．WDMT 970 | Ourango，Coio |  |
|  | 1350 | Columbus，Ohio | WENS 1460 C | WDVA 1250 M |  |  |
| loy，Fia． | $\begin{gathered} \text { CHWK } 1270 \\ \text { WBGC } 1240 \end{gathered}$ |  | ${ }_{920}^{230}$ A | Darington．S．C．WDAR 1350 | $\begin{aligned} & \text { Durz } \\ & \text { Duri } \end{aligned}$ | 750 620 |
|  |  |  | 820 | － 1 |  |  |
| istians | WBCR 1260 WIXI 970 |  | WVKO 1580 | 1580 N |  |  |
| Church Hill | WMCH 1260 | sh． | $\begin{aligned} & 1270 \\ & 1270 \end{aligned}$ | 170 990 | Dyersburg，Ten | WDSG 1450 |
|  | CHFC 1230 | Concord．Calif． | KWUN 4880 | 230 | Ea | KEPS 1270 |
| cclinati onlo | WHFC 4450 | Concord．N．H． | WKXL 1450 C | Dawson Creek，B．C．CJDC 560 | Eag | WEL |
| nelnnati Ohlo | WCKY 1530 | Concord N．C． | WEGO 1410 | Dayton，Ohio WH1O 1290 | Ea | WELP 1360 |
|  | WCPO 1230 | Concorula，Kans． | KNCK 1390 | $\begin{aligned} & 440 \\ & \hline 090 \end{aligned}$ | E．Grand Forks． | Krna 1590 |
|  | c |  | WWOW 1360 | WAVI 1210 |  | KERC 1590 |
|  |  |  | WCVI 1940 | Dayton，Tenn．WDNT |  | WKAR 870 |
|  | WZ1P 1050 | Connersville，Ind． | WCNE ${ }^{1580}$ | Oaytona Beach．Fia．${ }^{\text {a }}$ ， |  |  |
| anto | w | Conway，Ark． | KCON 1230 |  |  |  |
| Clare，Mleh． | WTSN 990 |  | KVEE 1330 | WROD 1940 |  | HFE 1580 |
| Caremo | WSR 1270 |  | WBAC 1050 |  | ${ }^{\text {P }}$ | W WREA 1480 |
| ${ }_{\text {Clarion，Pa．}}$ | WWCH 1300 | Cookeville，Tenn． | WHUB 1400 C | Decatur，Ala．WHDS | 左 | WTJH 1260 |
| Clarksburg．W．Va． |  |  | 1550 | WAJF 1490 |  | WB8R 1490 |
|  |  |  | M | Decatur，Ga．WGUN 1010 | ， | WEEX 1230 |
| WH1 | RADIO LOG |  | NG 1420 | ．WDZ 1050 |  | ESt 1400 |




| on | .L. Ke. N.A. | Location C.L. Ke. N.A | tion | Location C.L. Ke. N.A. |
| :---: | :---: | :---: | :---: | :---: |
| Lexington Pk., Md. | WPTX 920 | Madison, fla. WMAF 1230 | KYJC 1230 A.C | Houth, ill. WRAM |
|  | KLCB 1230 | $\begin{array}{ll}\text { Madison. Ga, } & \text { WYTH } 1250 \\ \text { Madison. Ind. } & \text { WORX } 1270\end{array}$ | WIGM 1490 M <br> Ita. CHAT 1270 | Monroe, Ga. WMRE 1490 Monroe, La. JMLB $1440 \mathrm{~A}-\mathrm{N}$ |
| Liberal, Kans. | + | Madison, S. D . KLAMA 1390 | Fla.-WMMB 1240 M |  |
| Liberty, N.Y. | WWOS 1240 | Madison, TERn. WENO Madison, Wis. | - 1430 c | Monroo, Mich. WQTE |
| Libue, Haw |  | madison, Wis. | WMC 790 N | , |
| Lima, Ohio | WIMA 1150 A | ISM $1480 \mathrm{~A}-\mathrm{M}$ | 1070 |  |
| Lincoln, 11. | WPRC 1970 | 1070 C | WHHM 1340 A | Monrovilie, Ala, WMFC, ${ }^{\text {Monterey, Callf. }}$ KIDD 630 |
| Lincoln, Nobr, | KFOR 1340 | Madisonville, Ky. WFMW 730 | $1480$ |  |
|  | KLMS 1483 | Magoe, Mlss. WSJC 790 |  | KDMA 1460 A |
| Lincolnton, N.C. |  | Magnoila, Ark. KVMA 630 | Mena, Ark. ${ }_{\text {K }}$ | Monte ista, Colo. KSLV 1240 |
| dons. | CKLY 910 | Maden, Mo. KTCB 1470 | Menominte, mich. WAGN 1940 A | Montgomery. Ala. WBAM 740 |
| chnield, | WSMI 1540 | Malvern, Ark. KBOK 1310 |  |  |
| (t) | KLFD 1410 | Manassas, Va. WPRW 1460 |  |  |
| Litile Falls, Minn. | KLTF 960 | Manati, P.R. WMNT | Meriden, Conn. WMMW 1470 | Y 800 |
| Littlo Littlef | WLFH 1230 | Manchester, Conn. WINF 1230 C Manchester. Ga. WFDR 1370 | Meridian, Miss. WCOC 910 C |  |
| Little Rock. Ark. | KARK 920 |  |  |  |
|  |  |  |  | Monticello, Ark. KHBM 1430 |
|  | KLRA 1010 A | c |  | Monticallo, Ky. WFLW 1360 |
|  | KTHS 1090 |  | Morrill, WIS. WXMT 730 |  |
|  | K | Manhattan, Kans. KS |  |  |
|  | - | M | Metter, Ga. WMAC 1360 |  |
| Livingiton, Mont. | KPRK 1340 M |  |  |  |
| Livinoston, Tenn. | WLIV 920 | KCMS 1490 |  |  |
| Livingst |  | Manitowoe, WIS. WCUB | Miaml, Ariz. Kiko 1340 |  |
| Lloyd | CKSA 150 | Mankato, Ninn. WOMT 1240 M | Miami, Fla. WGES 710 C |  |
| Lock | WBPZ 1230 m | 1420 A |  | CKGM 980 |
| Lodi. | KCVR 1570 | WYMB 1410 | $120$ |  |
| Logan, | KVNU 610 | Mansfield, Ohio WMAA 1400 A |  |  |
| Logan, W.Va. | WLOG 1230 M |  |  |  |
|  | WVOW 1290 |  |  | Morehead, Ky. WMOR 1330 |
|  | WSAL 1230 |  |  |  |
|  |  | WTOT 980 | 1360 M-A.C |  |
| London, Ky. | WFTG | Marietta, Ga. WFOM 230 |  |  |
|  | CKSL 1290 | Marietta, Ohio WMOA 1490 M | MS 1420 | WC |
| Lōn Beach, Ca | KFOX 1280 | Marine city, Mich. WDOG 1590 | W MPO 1390 |  |
|  |  | Marion, Ala. WIAM 1310 | Middlestoro, Ky. WMIK 560 | Morrisiown, N. S. WM |
| Lonomont, <br> Long Prair | KLMO 1050 <br> KEYL 1400 | Marlon, ili. WGGH liso | Middletown. Conn. WCNX 1150 | Mort |
| Lo | KFRO 1370 A | AT 1400 | Miduletown, ohlo WPFB 910 |  |
|  | K | MRI 860 | Midiand, Mich. Wh | Mort |
|  | KEDO 1400 A | Marion, Ohio WMRN 1490 A | Mld | h. |
|  | n. | Marion, S.C. WATP 1430 | Midland.. Tex. KCRS 550 |  |
| Lorain. | WWIz 1380 A |  |  | Moultrie, Ga. WMGAA 1400 |
| dsburg, | KLHS 950 | Marke | Milan, Tenn. WKBJ 1600 |  |
| Los Alamos, N.Mex | - KRSN 1490 | Marlborough, Mass. WSRO 1470 | Mlies city, mont. WATL1940 m |  |
| Los Angeles, Callf. | KABC 790 | Marlin. Tex. KAWA 1010 | WMRC 1490 |  |
|  | KFI 640 | Marquette, weh. WMHL 320 M | 0 m | Mt. Alry, N.C. WPAQ ${ }_{\text {WSYD }} 1300 \mathrm{~m}$ |
|  | KHJ <br> KFSG <br> 1150 <br> 150 | Marshali, Mo. KMM |  | - |
|  | KF |  |  |  |
|  | 1330 |  | 0 | Mt. Dora, Fla. WMDF 1580 |
|  | 570 |  | $490{ }^{\prime \prime}$ | Mit. Jackson. Va. WSiG ${ }^{\text {W90 }}$ |
|  | KMPC 710 |  | Milton, Pa. WMLP 1570 | mt. Olive. N.C. WDJS 4330 |
|  | KNX 1070 C |  | WEMP 1250 | Mit. Pleasant, Mich. WCEN 1150 |
|  | KGBS 1020 |  | 60 M | MIt. Shasta |
|  | X | Marysullie, Calif. KMMC 1410 N | O | Mt. Sterling, KY. WMST 1150 |
| Los Banos, Calif. | KLES 1330 | Marysille, Kans. KNDY ${ }^{\text {M }}$ M 570 | WM1L 1290 | Mt. Vernon, III. WMIX 940 |
| Loulsburg. N.C |  | Marsville Tenn. WGAP 1400 | WOkY 920 | Mr. Vernon, KY. WRVIS 1460 |
| Louisville. Ga. | WPEH 1420 ( | Mason Clity, lowa KGLO 3000 C | MInden, La, WTMJ ${ }_{\text {KASO }} 6240$ | MI. Vernon, ohio WMVO 1300 |
| Loulsville, Ky. | WAVE 970 N | KRIB1490 |  | Mt. Vernon, Wash. KBRG 1430 |
|  | WHAS 840 | KSMN 1010 | M Mneoia, N.Y. ${ }^{\text {a }}$ | Muleshoe. Tex. KMUL 1380 |
|  |  | WSTS 1050 | Minneapolis, Minn. WCCO 830 | Mullins, S.C. WLAY ${ }^{\text {M }}$ (280 |
|  |  | Massillen, Ohlo WTIG 990 | WMIN 1400 | ordville, Ky. WLOC 1150 |
|  | WKYOU 1350 |  | WDGY ${ }_{\text {WPBC }} 1130$ |  |
|  | WTMT 620 | Mattoon, III. WLEH 1170 |  | WMTS 860 |
| Loveland, Colo. | KLOV 1570 | Ma auston, Wis. WRJC 127 <br> Mayaguez, P. R. WAEL 60 |  |  |
| Lovington, N. Mex. | KLEA 630 | - WKJE 710 | KUOS 970 | Murphys boro, 1II. WINI 1420 |
|  | WLLH ${ }^{1400}$ |  | ot, N.Oak. KLPM 1390 M | Murray, Ky. WNBS K340 <br> Murray, Utah KMUR K330 |
| bock, Tex. |  |  |  | Muscatilne, lowa KWPC 860 |
|  | $\begin{aligned} & \text { KDAV } 580 \\ & \text { KDUB } 1340 \end{aligned}$ | Mayfield, Ky. WNGO  <br> Mayodan, N. $C$. WMYN <br> 1320  <br> 1020  | Míssion, Kans. KBEA 1480 |  |
|  | K | WFTM 1240 M |  | Muskegon. Mich. WKEZ 850 |
|  | KS | $00$ |  |  |
|  | WHHT 1440 |  |  | muskogee, okla. KB |
| Ludinoton, Mich. Lufkln, Tex. | WKLA 1450 A | McCamey. Tex. KAMY 1450 | KORN 1490 | WM |
|  |  | MeComb, Miss. WHNY 1250 A | KURA 1450 |  |
| Lumberton, N.C. | 580 | 1300 m | Noberly, mo. Nobile, Ala. |  |
| Luray, va. | (eall | 1360 |  |  |
|  | W | Mekeesport, Pa. WEDO 810 | 900 | 1570 <br> 730 <br> 80 |
| Va . | WLVA 3990 M - N | Mckenzie, Tenn, WHOM 1340 | WKAB 840 | Napa, Calif. KVON 1440 |
|  | Brg 10 | Mckinney, Tox. KMAE 160 |  | Naples. Fla. WNOG 1270 |
| , | WLYN 1360 | MCMInnvile. Oreg. KMCMM 1260 |  | WNRV 990 |
| Manomb. ill. | WKAA 1510 | sheminnvile, Tenn. WMMC 1230 M | Mobridge, S. Oak. K0LY ${ }^{\text {Modesto. Cailf. }}$ | 990 |
| Macon, Ga. | WBM |  |  |  |
|  | 0 | 10 |  | WNGA 1600 |
|  | AZ ${ }^{\text {P40 }}$ | 30 | Molave, Calif. KDOL 1340 | Nashville, Tenn, WKDA 1240 |
|  |  | M edford, Orea. KMED 1440 A |  | WMAK |
|  | BC 1400 |  | moneton. N. B. CBAF 1330 |  |
| Madill, Okla. | KMAD. 1550 | Or | t. Mo. KRMO | LOG 16 |


| Location | C.L. Ke. N.A. | ocation C.L.Kc. N.A. | Lecotion C.L.Ke. N.A. | Lecation | С.ட. Kс. N.A. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | Norman, Okla. WNAO 640 | CKOY |  | KHAT 1480 |
|  | $\begin{array}{ccc} \text { WSIX } & 980 & \text { A } \\ \text { WSM } & 650 & \mathrm{~N} \end{array}$ | Norman Wells, North. |  |  | $\begin{aligned} & \text { KHEP } 1280 \\ & \text { KCAC } 1010 \end{aligned}$ |
| Natchez. Miss. | WM1S 1240 N | west Territory CFNW 1240 | Owatonna, MInn. KRFO 1390 |  | KOY 550 A |
|  | WNAT 1450 M KNOC 1450 M | Norristown, Pa. <br> WNAR 1110 <br> N Adams. Alass. <br> WMNB 1230 | Owoso, N.Y. WEBO 1330 Owenshoro, KY. WOMI 1490 M |  | $\begin{array}{lll} \mathrm{OOOL} & 960 & \mathrm{C} \\ \mathrm{PHO} & 910 & \mathrm{~A} \end{array}$ |
| augatuck, Conn. | WOWW 860 | N. Adarms, mass. WMNB ${ }^{\text {N }}$ A 230 | WVMS 1420 A |  | KUEQ 740 |
| avasota, Tex. | KWBC 1550 | 550 | Owen Sound. Ont. CFo's 56 |  |  |
| city. |  | N, Battloford, Sask. CJNB 1460 | Owosso, Mich. WOAP 1080 |  | R 620 |
|  |  | North Bay, Ont. CFCH 600 | Oxford, Mlss. WSUH 1420 | Picayune, Miss, |  |
| Needles, Catif. | KSFE 1940 | North Bend, Oreg. KFIR 1940 C | Oxford, N.C. WOXF 1340 | Piedmont, Ala. | WPID 1280 |
| Noenat, Wis. | W NAM 1280 | North Charieston, s.C. | Oxnard, Calit. K0XR 910 | e, S.Dak. | KGFX <br> KCCR 1590 <br> 1890 |
| Neilsvile, Wis. Nelson, B.C. | WCCN 1370 CKLN 1390 | Northfield. Minn. WNCG 910 | Ozark, Ala. WOZK 900 | Pikevill | KCCR 1590 |
| Neon, ky. | WNICY 1480 | Northampton, Mass. | WDXR 1560 | Plikevino, Ky. | (E 1240 |
| Neosho, Mo. | KBTN 1420 |  | 450 C | Pine Bluff. Ark. | KCLA 1400 KADL 1270 |
| Nevada, Mo. | KNEM 1240 WOWI 1570 | KDXE 1380 A | Page, Ariz. KPGE 1340 |  | KADL 1270 KOTN 1490 M |
| New Albany, Ind. New Albany, MIss, | WOWI 1570 WNAU 1470 |  | Pahokee, Fla. WRIM 1250 |  | $\begin{aligned} & \text { KOTN } 1490 \text { M } \\ & \text { KPBA } 1590 \end{aligned}$ |
| ewark, Doi. | WWRK 1260 | KODY 1240 N | Painesvili, Ky. WSIP 1490 M | Pine | WCMP 1350 |
| ewark, N.J. | WNTA 970 | No. Syracuse, N.Y. WSOQ 1220 M | Palatka, Fia. WWPF 1260 |  | WMLF 1230 |
|  | WHBI 1280 | No. Vancouver, B.C, CKLG 730 | WSUZ 800 | Pi | WWYO 970 |
|  | WNJR 1430 | N. Vernon, Ind. WOCH 1460 | Patestine, Tex KNET 1450 | Plp | KLOH 1050 |
|  | WVNS 620 | No. Wilkesboro, N.C.WKBC 810 | Palm Beh., Fla. WaXt 1340 A |  | WPTW 1570 |
| Newark. N. Y. <br> Newark, Ohlo | WACK 1420 <br> WCLT 1430 | Norton. Va. WNVA 1350 M | Palm Spros., Calif. KCM 1010 C |  | $\begin{array}{ll} \text { KKIS } & 990 \\ \text { KOAM } & 860 \end{array}$ |
| Newark, Ohio <br> New Bedford, Mass. | .WBSM 1420 | Norwalk, Conn. WNLK 1350  <br> Norwleh, Conn. WICH 1310 | $\begin{array}{ll} \text { KDES } & 920 \\ \text { KPAL } & 1450 \end{array}$ |  | KSEK 1940 |
|  | WNBH 1340 M | Norwleh, N.Y. WCHN 970 | Palmdale, Calif. KUTY 1470 | Pittsturgh, Pa | KDKA 1020 |
| Now Bern. N,C. | WHIT 1450 M | Oakdale, La. KREH 900 | Alto, Callf. <br> KIBE 1220 |  | $\text { WAMO } 860$ |
|  | WRNB 1490 WKDK 1240 | Oakes. N.Dak. KEYD 1220 | KPa, Tex, KPDN 1340 M <br> KHHH 1230  |  | W JAS 1320 |
| New Boston. Ohio | W101 1010 |  | ma cjty, Fla. WDLP 590 |  | WPIT 730 |
| New Braunfols. Tex. | KGNB 1420 | Oaktand, Calif. KEWE 910 | WPCF 1430 M |  | 50 |
| New Britain, Con | WHAY 910 A | Oakland. Caifo KABL 960 |  |  |  |
|  | 8 | 10 |  | PIt | WBBA 1580 |
| Newburgh, N.Y. | 20 | Oak Park, III. WOPA 1490 | KMET 930 | (rshe. | WBEC 1420 A |
| Newburyport, Mass. | WNBP 1470 | Oak Ridoe. Tenn. WATO 2950 | Paragould, Ark. KDRS 1490 |  | WBRK 1340 M |
| New Carlisle, Que. | CHNC 610 | Oeala, Fla. WMOP 900 | Paris, Ark. KCCL 1460 | Plitston, $\mathrm{Pa}_{\mathrm{a}}$. | WPTS 1540 |
| Now Castte, Ind. | WCTW 1550 | Ocala, WTMC 290 N | Paris, 111. WPRS 1440 | lainv | $\text { KVOP } 1400$ |
| Newcastle, N.B. | CKMR 790 | W KOS 1370 | Paris, Ky. WKLX 1440 |  | KPLA 1050 |
| New Castie, Pa. | WKST 1280 m | Ocean Clty, Md. WETT 1590 | Parls, Tenn. | Plant City, Fla. | WPLA 910 |
| Neweastle, Wyo. New Glasgow, N.S. | KASL 1240 | Oceanlake, Ored. KBCH 1380 | $\text { PLT } 1490 \text { A }$ |  | SWW 1590 |
| New New Haven, Conn. | CKEC 320 | Oeeanside. Callf. KUDE 1320 |  | Plattsburg, N. Y | EAV 960 A.N |
| New Haven, Conn. | $\begin{array}{c\|c} \text { WAVZ } & 1300 \\ \text { WELI } & 960 \end{array}$ | Ocilla, Ga. WSIZ 1380 |  |  |  |
|  | WNHC 1340 A | Odessa. Tex. KECK 920 | WTAP 1230 A | Pleasanton. | KBOP 1380 |
| w | ANE 1240 | $\text { SA } 1230 \text { C }$ | WPF | Ploasan | WOND 1400 |
|  | VIM 1360 | KRIG 1410 M | Parry Sound, Ont. CKAR-1 1340 | Plymouth, Mass. | WPLA1 1390 |
| New K | WKPA 1750 |  | Parsons, Kans. KLKC 1540 |  | $\begin{gathered} \mathrm{VC} \\ -\mathrm{Y} \\ \mathbf{1 4 7 0} \end{gathered}$ |
| New | NLC 1510 m | Ogallala, Nebr, KOGA 930 | Pasadena, Calif. KALI 1430 |  | $20$ |
| New Martinsville | Va. <br> WETZ 1330 M | Ogden, Útah KLO 4330 M |  | ocatello, Idaho | 930 |
| Newnan, Ga. | WCOH 1400 M | $\begin{aligned} & 1250 \\ & 730 \end{aligned}$ | KWKW 1300 |  | $\text { KWIK } 1240 \text { M }$ |
| New Orleans, La. | WOSU 1280 N | KVOG 1490 | na, Tex. KLVL 1480 |  | WDMV 540 |
|  | WJBW 1230 |  |  |  | CFOX 1470 |
|  | W)MR 990 | $\text { oil City, Pa. WKRZ } 1340$ | Point, Miss. | Pomona. Calif. | 0 |
|  | $\begin{array}{ll} \text { WBOK } 800 \\ \text { WNOE } 1060 \end{array}$ | Okla. City, Okia. KBYE 890 A |  |  | KKAR 1220 |
|  | WSMB 1350 A |  |  | Pompano Beach, F |  |
|  | S0 |  | $N$ |  | WLOD 980 |
|  | WTIX |  |  |  |  |
|  |  | $\text { KJEM } 800$ | 37 |  | $\begin{array}{ll} \hline B B Z & 230 \\ \hline \text { PRP } & 910 \end{array}$ |
|  | WYLD 940 M | WKY 930 |  |  | WEUC 1420 |
| Newport, Act | KNBY 1280 | Okmuloen. Okla. KOKL 240 | Pauls Valloy, Okla. KVLH 1470 |  | WPAB 550 |
| Newport, Ky, | WNOP 740 | Old Saybrook, Conn. WM LS 1360 | Pawtueket, R.J. WXTR 550 A |  | WLEO 1170 |
| Nowport, N.H. | WCNL 1010 | WHEL 1450 A | Payette.'taho KEOK 1450 |  | WPON 1460 |
| Newport, Orea. | KNPT 1310 | Olney, III. WVLN 740 | Peace River, Alta. CKYL 630 |  | KWOC 930 |
| Newport, R.I, | WADK 5540 | Olympla, wash. KGY 1240 M | Pecos. Tex. KIUN 1400 M |  | KLID 1340 |
| Newport, Newnort, |  | KITN 920 | Peekskill, N.Y. WLNA 1420 | Portage | WWML 1470 |
| Newport News | WGH 1310 A | Omaha, Nebr. KBON 1490 | Pokin, III. WSIV 1140 |  | WPDR 1350 |
|  | WTID 1270 | KFAB 1110 N |  |  | Man |
| New Richmond, WIs |  | $\begin{array}{r} \text { KOIL } 1290 \\ \text { KOOO } 1420 \end{array}$ | Pendieton, Oreg- KK1D 1240 A |  | CFRY 1570 KMIS 1050 |
|  |  | KMEO 660 | KUBE 1050 | ort Alberni. B.C. | CJAV 1240 |
| yrna Beach. | h. Fla. | Dmak. Wash. KOW ${ }^{\text {WOM }}$ 680 C | KUMA 1290 | Portales, N.Mex. | KENM 1450 |
|  | WSEB 1230 M |  |  |  | KAPY 1000 |
| Newton, Iowa | WORT $\times$ COR 1280 | Onoida, Tenn. WBNT 1310 | Pensacola, Fla. WEOP 980 | thur, Ont. | CFPA 1230 |
|  | KJRG 950 | O'Nelli. Nebr. KBRX 3350 | WDEB 610 C | Arthur, Tex. | KOLE 1340 |
| Newton, Mlss. | WBKN 1410 | Oneonta, Ala, WCRL 1570 | WBSR 1450 |  | KPAC 1250 M |
| Newton, N.J. | W\&NJ 1360 | Oneonta, N.Y. WDOS 730 | $\begin{aligned} & \text { WNVY } 1230 \text { A } \\ & \text { WCOA } 1370 \text { N } \end{aligned}$ | ville. | $\text { KTIP } 1450 \text { A }$ |
| Newton, N.C. | WNNC 1230 | $\begin{array}{ll}\text { Ontarlo, Calif. } & \text { KASK } 1510 \\ \text { Ontario, Oreg. } & \text { KSRV } 1380\end{array}$ | WPFA 790 |  | If. KACY 1520 |
| New Uim, Minn. | KNUJ 860 | ontario, reg. Opellka, Ala. | Penticton. B.C. CKOK 800 | Port Hoeneme.Call | WHLS 1450 |
|  |  | Onelousas, La, KSLO 1230 A | Peoria, lit. WAAP 1350 N |  | WTTH 1380 A |
|  | WABC 770 A | Opp, Ala. WAMI 860 | WMBD 1470 C | Port Jervis, | WDLC 1490 |
|  | WBNX 1380 | Opportunlty, Wash. KZUN 630 | WIRL 1290 | av | KGUL 1560 |
|  | WCBS 880 C | Orange, Mass. WCAT 1390 | WPEO 1020 |  |  |
|  | WEVD 1330 | Orange, Tex. KOGT 600 | Perry, fla. WPRY 1400 | ortiand, Maine | CSH 970 N |
|  | WHOM 1480 | Orange, Va. WJMA 1340 | Perry, Ga. WPGA 980 |  | WGAN 560 |
|  | WINS 1010 | Orangeburo, S.C. WDIX ${ }_{\text {WOR }}$ W 1550 A | Perry, Iowa KOLS Perryton, Tex. KEYET400 m |  | WLOB 1310 |
|  | WLIB 1190 |  | Peru. Ind, WARU 1600 | Portland, Ores. | KBPS 1450 |
|  | WMCA 570 | Orange Park, Fla. WAYR 550 | Petaluma, Calif. KTOB 1490 |  | KBEV 1010 |
|  | WMGM 1050 | Oregon Clty, Oreg. KGON 1520 M | 980 |  | KLIQ 1290 |
|  | WNYC | Orilla, Ont. CFOR 5570 |  |  |  |
|  | WOR 710 M | Orlando, Fla. WDBO 580 C |  |  | KOIN 970 C |
|  | WADO 1280 |  | WPNX 1460 A |  | PAM 1410 |
|  | WPOW 1330 | WLOF 950 | Phladelpha, miss. W |  | KPDQ 880 |
|  | WNBC 660 N | WKIS 740 N | Philadelphla. Pa. WCAU 1210 |  |  |
| agarafills, N.Y.W | WHLD 1270 | Ond Beh.. Fla. WaXa ${ }^{\text {S }}$ | WFIL 560 |  | KXL 750 |
|  | WJIL 1440 | Orandil ${ }^{\text {O }}$ | WFLN 900 |  | KPNG riso |
| Niagara Falls. Ont. | CHVC 1600 | Osage Beh., Mo. KRMS 1150 | WAT 1340 | Portsmouth. N.H. | WEBX 1380 |
| Niles, Mich. | WNIL 1290 | Osceola, Ark. KOSE 860 | BG, 990 |  | WHEB 750 |
| Nogales, Ariz. | KNOG 1340 A | Oshawa, Ont. CKLB 1350 | WIP 610 | Portsmou | WPAY 1400 |
| me. Alaskz | KICY 850 | Oshkosh, Wis. WOSH 1490 a | WJMJ 1540 |  | WNXT 260 A |
| Noriolk. Nebr. | WJAG 780 | Oskaloosa, lowa KBOE 740 | $\text { WPEN } 950$ | Portsmouth, Va. | $\text { WHIH } 1400 \text { A }$ |
| Norfolk, Va . | WTAR 790 C | Oswego, N.Y. WSGO 1440 | WRCV 1060 N |  | WPMH 1010 |
|  | WCMS 1050 | Othello, Wash. KRSC 1400 | WTEL 860 |  | 350 N |
|  | WNOR 1230 | Ottawa, III. WCMY 1430 | Phllipsburg, Pa. WPHB 1260 |  | UK0 1370 |
|  | WRAP 850 | Ottawa, Kans. KOFO 1220 | Phillipsturg, Kans. KKAN 1490 | ,ki | LCO 1280 |
|  |  | Ont. C80 910 | $\begin{array}{ll}\text { Phoenix. Arl2. } \\ & \text { K1FN } \\ \\ \text { KXIV } 1400\end{array}$ | Poto Pots | KYRO 1280 WPDM 1470 |



| Location | C．L．Ke．N．A． | Location C．L．Ke．N．A | Location C．L．Ke．N．A． | Ion | L．Ke．N．A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mour，Ind． | $390$ | K | M | Tyler，Tex． | KOOK 1330 |
| Seymour，Tex． | KSEY 1230 | 8 KTTS 1400 C | A |  |  |
| Shamok | KBYP 1580 | Sorinofleld，Ohio KWTO ${ }_{\text {W }}$ W60 A |  |  | KTBB 600 A |
| haron， | WPIC 790 | Sorlind | Texas city，Tez KTLW 920 | Tyrone，Pa． | TRN 1340 |
| Shawano | WTCH 960 | Springfeld，Drea．KEED 1050 | Thayer，Nio．KALM 1290 | Ukiah，Calit． | UK1 1400 |
| Shawini | CKSM 1220 | Springfeld，Tenn：WDBL 1590 | The Dalles，Oreg．KODL 1440 |  | KMSL 1250 |
| Shawnee， Sheboygan， | KGFF 1450 M | Springfold，VI．WCFR 1480 | KRMW 1300 |  | KKCN 1300 KLPW 1220 |
| Sheboy | $\begin{aligned} & \text { WHBL } 1930 \text { A } \\ & \text { WKTS } \\ & 950 \end{aligned}$ | Springhill，La．K．KBSF 1460 | $\begin{aligned} & \text { KRTR } 1490 \text { M } \\ & \text { KTHE } 1240 \end{aligned}$ | Union，Mo． Union，S．C． | $\begin{aligned} & \text { KLPW } 1220 \\ & \text { WBCU } 1460 \end{aligned}$ |
| S | WSHF 1290 | Stamford，Conn，WSTC 1400 A | Thi | Union City， | WENK 1240 |
| Shelby， Shelby， | KSEN 1150 M | Stamford，Tex．KOWT 1400 | Minn．KTRF 1230 |  | WMBS 590 |
|  | WADA $1390{ }^{\text {m }}$ | Starke Fla. <br> WRGR 1490 |  | Urb | WILL |
| Shelbyville，Ind． | WSVL 1520 | Starkville，Miss．WSSO 1230 | Thomaston，Ga．WSFT 1220 | Utica，N．Y． | WIBX 950 C |
| Shelbyvillc，Tenn． | WHAL 1400 | State College，Pa．WMA」 1450 M | $159$ |  |  |
| She | KFNF 920 | Statesboro，Ga．WWNS 1240 | Thomasville，Ga．WPAX 1240 | U | VOU 1400 |
|  | KMA CHL 960 A | Statesvilie．N．C．WSIC 1400 |  |  | CKVD 1230 |
| Sherbrooke，Que． | $\begin{array}{cc}\text { CHLT } & 630 \\ \text { CKTS } & 900\end{array}$ | Staunton，Va．WDBM $\quad$ W50 A | Thomasville，N．C．WTNC 790 <br> Thomson，Ga．WTWA 1240 M | $\stackrel{\mathrm{Va}}{\mathrm{Va}}$ | $\begin{aligned} & \text { WSUM } 1490 \\ & \text { wGOV } 950 \end{aligned}$ |
| dan， | KWYO 1410 M | WAFC 900 | Three Rivers．Que．CHLN 550 |  | GAF 910 A |
|  | KROE 930 | Stephonville ${ }^{\text {j }}$ Tex．KSTV 1510 | CKTR 1150 |  | 析 |
| Sherman， | KRRV 910 M | Sterling，＇Colo．KGEK 1230 | Ticonderoga，N．Y．WIPS 1250 |  | 50 |
|  | KTXO 1500 | KOLR 1490 | Timin，Ohio WTTF 1600 | Valentine．Nobr． |  |
|  | WSHP 1480 | Sterling，III．WSDR 1240 | Tifton，Ga．WTIF 1340 |  | KNBA 1190 |
| Show L | KVWM 1050 | Steubenvilis，Ohio WSTV 1340 M |  | Valley City，N．Dak |  |
| Shreveport，La． | KANB 1300 $\text { KBCL } 1220$ | Stevens Point，Wis．WSPT 1010 Stillwater，MInn．WAVN 1220 | Tillamook，Oreg．KTIL 1590 | Valparalso-Nlce |  |
|  | KCII 1050 C | Stillwater，Okla．KSPI 780 | Tlmmins，Ont．CFCL 620 |  | KFDF 1580 |
|  | EEL 710 | Stockton，Calif．KJDY 1280 | KGB 680 | Van Cleve，$k$ | W HTC 730 |
|  | 1550 M |  | WRMF 1050 | Van Wert，On | WERT 1220 |
|  | $\text { KE } 1480$ | Storm Lake，lowa KWGYL ${ }^{230 \text { A．M }}$ | WTIV 1290 <br> WLET 1420 M | Va | WKKS 1570 |
|  | KRMD 1340 A | Stratiord，ont．CJCS 1240 | 630 |  |  |
|  | KWKH1130 C | Streator，III．W122 1250 | Toledo，Ohio WOHO 1470 M |  | HM 1320 |
| Sldney， | KGCX 1480 M | Stroudsburg．Pa．WVPO 840 M | 370 N |  | 600 |
| Sidney， | 340 A | Stuart，Fla．WSTU 1450 m |  |  |  |
| erra | KHFH 1420 |  | A | Van |  |
| kesto | WSCA 570 | Sturgis，Mich．WSTR 1230 |  |  |  |
| Slloam Spris | KUOA 1290 M | Stutigart，Ark．KWAK＇1240 M | Tomah，Wis．WTME 1460 |  | WAMR 1320 |
| Silabee．Tox． | KKAS 1300 | Sudbury，Ont．CKSD 790 | Tompkinsvilie，Ky．WTKY 1370 | Ventura，Ca | KVEN 145 |
| Sliver | KSIL 1340 C | 8 550 | Tooele，Utan KDYL 990 |  | KUDU 1590 |
| Silver | QMR 1050 |  | Topeka，Kans．WIBW 580 C | Ver | CKVL 850 |
| Simeos， | CFRS 1560 |  |  |  | KUSD 690 |
| Sinton | KTOD 1590 | Sulphur．La． KIKS 1310 | A | Vernal．Ut | KVEL 1250 |
| Sioux Clty，Iowa | KSCJ 1360 A | Sulphur Sprgs．，Tox．KSST 1230 | 90 m |  | 析 |
|  | KMNS 620 | Summerside．P．E．I．CJRW 1240 | KENE 1490 |  |  |
|  | KTRI 1470 | Summerville，Ga．WGTA 950 | Toronto，Dnt．CBL 740 N | Ve |  |
| Stoux Falls．S．Daki | ，KISD 1230 | Sumter，S．C．WFIG 1290 M | C |  |  |
|  | K ELO 1920 |  | 050 | Vicksburg，Miss， | GBC 1420 m |
|  |  |  | ${ }^{860}$ |  | VIM 1490 |
| Sltka，Alàske | A | Sunnyside，Wash．KREW 1230 | 580 M | Vic | $\begin{array}{r} 900 \\ 810 \end{array}$ |
|  | SEW 1400 | Sun Valley，Ida．KSKI 1340 | rington，Conn．W BZY 990 |  | CKDA 1220 |
| Skowh | 硣 | Superior，Nebr．KRFS 1600 | TOR 1490 M | Viétorla，Te | KNAL 1410 |
| Slaton，Tex． | KCAS 1050 | Superior，Wis．WDSM $710 \mathrm{~N}^{\prime}$ | Torrington，Wyo KGOS 1490 |  | $340$ |
| Smethport， | WSPO 910 | L 970 | Towanda，Pa．WTTC 1550 | Victorlaville， $\mathbf{Q}$ |  |
| Smithit | WMPM 1270 | WQAN 1320 | Towson，Md．WAQE 1570 | Victorvilis，Calit | KCIN 1590 |
| Smiths Falls， | CSET 630 | Susanvilie，Calif．－KSUE 1240 | Trail．B．C．CJAT 610 | Vldalia， | WVOP 970 |
| Smyrna，Ga． | WSMA 1550 | Swainsboro，Ga，WJAT 800 | Traverse City，Mich．WTCM 1400 | Vioqu | WIVV 1370 |
| Snyde | KSNY 1450 M | Sweetwater，Tenn．WDEH 800 | WCOW 1310 | Ville Maria， | CKVM 710 |
| Socorro | KSRC 1290 | Sweetwater，Tox．KXOX 1240 | WCCW 1310 | Vilis Platte， | K VPI 1050 |
| Soda Soros． | KBRV 540 | Swift Current，Sask．CKSW 1400 | Trenton，Mo．KTTN 1600 | Ville st． |  |
| Solvay，N．Y． Sumerset，K． | W QSA 1320 |  | Trenton，N．J．WAAT 1300 |  |  |
| Sumarset，Ky． | WSFC 1240 M | $\begin{array}{l\|l\|l\|} \hline & 270 \\ B & 340 \mathrm{~m} \end{array}$ | D 1260 |  | WAOV |
| Somerset． |  | WMLS 1290 |  |  | WBZ 1360 WOVL 1270 |
|  | KVML 1450 | Sylva，N．C．WMSJ 1480 | Iroy．Ala．WTBF 970 M | ni |  |
| Sonora，Tex | KCKG 1240 | Sylvania，Ga．WSYL 1490 | Troy，N．Y．WHAZ 1330 | Vint | KBA 1550 |
| Sorel，P．a． | CSSO 1320 | Syracuse．N．Y．WHEN 620 C | WTRY 980 | Viroinia．M | WHLB 1400 N |
| South Belolt，If So．Bend，Ind． | WBEL 1380 | F．BL 1390 <br> NDR 260 | Troy，N．C．WXKW 1000 | Virpinia Bt | WBOF 1550 |
|  | WNDA 1580 M | OLF 1490 A | KHOE 1400 | Visa | WISV 1360 |
|  | WSBT 960 C |  | Truro，N．S．CKCCL 600 | VIvi | VI 1600 |
| Southbridoe，Mass． | WESO 970 | Tabor City．N．C．WTAB  <br> Tacoma，wash． KMO 1360 |  | Waco， | WACO 1460 A |
| So．Boston，Va． <br> Southern Pines．N．C． | WHLF 1400 A C．WEEB 990 | Tacoma．Wash．KTAC 850 | eo KCHS 1400 |  | M |
| South Daytona Beac |  | NT 1400 |  |  |  |
| Florida | WELE 1590 | 570 Nt |  |  |  |
| So，Gastonia．N．C． | WGAS 1420 | t，Callf．KTKR 310 | CEE 790 | Waipabu，Hawali | AHU 920 |
| So．Knozvilie，Tenn． | n．WSKT 1580 |  | KTAN 580 A | Walhalla，S．C． | WGOG 1460 |
| So．Paris．Ate． | WKTQ 1450 | Talladega，Ala．WJHB 1580 | KCUE 1290 N | Wallace，Idaho | L ${ }^{620}$ m |
| So．St．Paul，Minn． | ก．WISK 630 m | Tallahassee，Fla．WMEN 1330 | $\begin{aligned} & \text { KEVT } 690 \\ & \text { KOBY } 940 \end{aligned}$ | Waliace |  |
|  | Pa．MPT 1450 | 270 | K M OP 1330 |  | KHIT 1320 |
|  | WMPT 1450 | NT 450 A．M．C | KFIF 1550 |  | KUJ 1420 Mt |
| Spanish Fork，Uiah Sparks．Nev． | $\begin{gathered} \text { KONI } 1480 \\ \text { KBUB } 1270 \end{gathered}$ | Tallassee．Ala．WTTS 1300 | 90 |  | ${ }_{20} \mathrm{~A}$ |
| Sparta， | W HCO 1230 | Tallulah，La．KTLD 1360 |  | Walsutburg， | $\text { KFLJ } 1380$ |
| Sparta， | WSMT 1050 | Tampa，Fla．WALT 1110 | Tulare，Calif．Mex．KCOK 1270 M | Walterboro，S．C． | WALD 1220 A |
| Sparta，Wis． | WKLF 990 |  |  | Walth | 1330 |
|  | WCOW 1290 M | WFLA 970 N | Tulia，Tex．KTUE 1260 | Walton，N．Y． | 270 |
| Spartanturg，S．C． | WTHE 1400 M | WHBO 1050 | Tullahoma，Tenn．WJIG 740 | Ward Ridde | W．WJOE 1570 |
|  | （1） | WINQ 1010 | Tulsa，Okla．KAKC 970 | Ware，Mass． |  |
| ne | ICD 1240 | WTMP 1150 |  |  | 50 |
|  | WSPZ 1400 | KKIT 1340 | KTUL 1430 C | War | WHHH 1440 |
| Spokane，Wash． | KGA 1510 A | WCPS 7 |  |  | WNAE 13 |
|  | KLYK 1230 |  | $\text { KFMJ } 1050$ | Warrensturg．Mo． | C KOKO 1450 |
|  | PEEG 1380 |  | Tupelo，Miss．WELO 580 M |  | KWR |
|  | KHQ 599 N |  | Tupelo，Miss．WTUP 1490 A | Warrenton, va. | WEER 1570 |
|  | NEW 790 M | Tawas Clty，Alich．WIOS 1480 | － |  |  |
|  |  | Taylor，Tox．KTAE 1260 | 150 | Warsaw | WRSW 1480 |
|  | KXLY KCFA 1330 | Taylorville．III．WTIM 1410 | 0 |  | WNNT |
|  | KBRS 1340 A | Tazewell，Tenn．WNTT 1250 |  |  |  |
| Springfield，III．W | WCVS 1450 A －M | Tell Clty．Ind．WTCJ 1230 |  |  |  |
|  | 970 N | Tempe，Ariz．KUPD 1060 | $\text { VNA } 590$ | Washington，D． | $\text { WGMS } 570$ |
|  | $\begin{aligned} & \text { WTAX } 1240 \text { C } \end{aligned}$ | KYND 1580 | WGHP 1410 |  | WMAL 630 A |
|  | WHYN 560 C |  | Tuskogse．＂Ala．WABT 580 |  | ${ }_{340}{ }^{\text {M }}$ |
|  | M |  |  |  | $\text { WOC } 1260$ |
| ringfeld，Mo． |  | 00 | Twin Falls，idaho KTFI 1270 N |  |  |
|  |  |  | $\begin{aligned} & 310 \mathrm{M} \\ & 450 \end{aligned}$ | n， | WKLE 13 |
| 88 |  | Terrytown．Nebrr KTCl 690 | O Rivers，Wis，WTR | ashington， | WAMW 158 |

Location

Washington, lowa Washington, N.J.

Washington, N.C. Washington, Pa. House, Ohio Waterbury, Conn,

Waterbury, Vt. Waterioo, lowa

Watertown, N.Y.

Watertown, S.Dak. watertown, wis. Waterville, Mis. Watseka, llf. Wauchula, Fla. Waukegan, III. W aukesha, Wis. Waupaca, Wis. Wausau, Wis.

Waverly, lowa
Waverly, Ohlo Waxahachie, Tex Waycross, Ga.

Waynesboro, Ga. Waynesboro, Mliss. Waynesboro, Va.

Waynesbure, Pa. Waynesville, Mo. Waynesvilie, N.C. Webster City, lowa Weed, Callf.
Weirton, W.Va. Weiser, Jdaho
Welch. W.Va.
Weldon, N.C. Welland. Ontario Wellsboro, Pa.
Wellston, Ohio Wellsville, N.Y. Wenatchee, Wash
C.L. Ke. N.A KCII 1880 WCRV 1580 WEEW 1320 WJPA 1450 M

WCHO 1250 WATR 1320 WBRY 1590
WWCO WDEY 550 M
KXEL 1540
KNWS 1090
KWWL 1330
WATN 1240 WWNY 790 KWAT 950 M WTTN 1580 WGFA 1360 KOMY 1840 WAUC 1310 WKRS 1220 WAUX 1510 WOUX 1510
800 WRIG 1400 WSAU 550 WHVF 1230 KWVY 1470
WPKO 1380 KBEC 1390 WACL 570 WAYX 1230
WBRO WABO 990 WAYZ 1380 WAYB 1490 A WANB 1580 KJPW 1390 WHCC 1400 KZEE 1220 KOF」1570 KOAO 800
WEIR 1430 KWEI 1260 KWEI 1260 WOVE 1340 M WCNF 1400 CHOW 1470 WNBT 1490 A
WKOV 1390 WLSY 790 KPQ 560 A KMEL IS40 M


Location
WIdwood, N.J.

C.L. Ke. N.A.

WSJS 600 N WTOB $1380 \mathrm{M} . \mathrm{C}$ Winter Garden, Fla. WOKB 1600 Winter Park, Fia. WABR 1440 A Wisconsin Rapids. WIs

WFHR 1320 M Wolf Pt., hont KVCK 1450 Wood River, III. Woodslde. N.Y. WWRL I 600
Woodstock, N.B. Woodstock, N.B. Woodstock, Ont. Woonsocket, R.i.

Wooster, Ohlo Worcester, Mass.

WAAB I $440 \mathrm{M}-\mathrm{N}-\mathrm{A}$ WNEB 1230 $\begin{array}{lll}\text { WTAG } & 580 & \text { C } \\ \text { KWOR } & 1840 \mathrm{Al}\end{array}$ Worland, Wyo KWOR 1340
KWOA 730 Worthinaton, Minr. KWOA 730 Worthington, Ohio WRFD 880
Wynne, Ark. KWN 1400 Wytheville, Va. WYVE 1280 KIMA 1460 C Yankton, S.O. KYAK 1390
KYNT 1450 $\begin{array}{ll}\text { Yarmouth. N.S. WNAX } & \text { CJLS } 1340 \\ \text { Yauco, P.R. } & \text { WKFE } 1550 \\ \text { Yaroo }\end{array}$ Yellowknife, N.W.T
York. Nebr, KAWL 1970 York, Pa. WNOW 1250 WORK 1350 N
WSBA 910 A. M York. S.C. WYCL 1580 Yorkton, Sask. CJGX 940
 WKBN 570 C Vreka, Callf. KSYC 1490 Yuba City, Callf. KUBA 1600
Yuma, Ariz. KOFA 1240

KBLU 1320
$\begin{array}{lll}\text { KVOY } & 1400 & \mathrm{~A} \\ \text { KYUM } & 560 & \mathrm{~N}\end{array}$ $\begin{array}{lrl}\text { KYUM } & 560 & \mathrm{~N} \\ \text { WHIZ } & 1240 & \mathrm{~N}\end{array}$ Zanesville, Ohjo WHIZ 1240
Zarephath, N.J. WAWZ 1380 Zarephath, N.J. WAWZ 1380
Zephyr Hills, FIa. WZRH 1400

## U. S. AM Stations by Call Letters

## C.L. Location

KAAA KIngman, Ariz.
KAAB Hot Springs. Ark KABC Los Angeles. Calif KABL Oakland, Callf. KABR Aberdaen, S. Dak. KABR Aberdaen, S. Dak KABY Albany, Oreg. KACI The Dalles, Calif. KACI The Dalles, Oreg, KACY Port Hueneme, Calle KADA Ada, Okla. KADA Ada, Okla. KADL Pine Bluff, Ark. KADY St. Charles. Mo. KADY St. Charies, Catli. KAFY Bakersfield, Calif. KAGE WInona, Minn. KAGM Crossett, Ark. KAGI Grants Pass, Oreg. KAGO Klamath Falls, Oreg. KAGR Yuba City, Calli. KAGT Anacortes. Wash. KAHI, Auburn, Calif. KAHU Walpahu, Hawall KAMR Reddlng. Calif. KAlM Kalmuki. Hawall KAlR Tucson, Ariz. (A)l Litile Rock, Ar KAJO Grants Pass, Oreg. KAKA Wickenburg, Arlz. KAKC Tulsa, Okla. KAKE WIChita, Kan KALB Aletandrla. La KALE Richland, Wash. KALG Alamogordo. N.Mex. KALI Pasadena. Callf KALL Salt Lake City, Utah KALM Thayer, Mo. KALN tola, Kan. ALy Alva, Okla KAMD Camden, Ark AML Kenedy. Tex KA A10 Rogers, Ark. KAMP EI Centro, Callt. KAMY McCamey, Tex. KANA Anaconda, Mont. (ANB Shr KAND Corstcana Tex ANE New Iberla, La. KANI Wharton, Tex. KANN Ogden, Utah
$K \subset$
1230
350
790
960
1350
1420
990
1370
1360
1520
1230
1270
1410
1460
550
1380
800
930
1150
1450
1340
950
920
1270
870
1490
1250
1270
1250
970
1240
580
960
1230
1430
910
1290
1370
900
1430
910
990
1390
1430
1450
1230
1300
1340
1240
1500
1250

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| Kc. | C.L. Location |
| :---: | :---: |
| 1470 | KBAR Burley, Idahe |
| 1510 | KBBA Benton, Ark. |
| 1400 | KBEB Borger, Tex. |
| 1430 | KBBC Centerville, Utah |
| 1340 | KBBR North Bend, Ores. |
| 1370 | KBES Buffalo, wyo. |
| 1480 | KBBZ Laramie, Wyo. |
| 690 | K BCM Oceanlake, Oreg. |
| 930 | IKBCL Shreveport, La. |
| 1290 | KBEA MIsslon, Kans. |
| 1310 | KBEC Waxahachie. Tex. |
| 1470 | KBEE Modesto, Callf. |
| 550 | KBEK Elk City, Dkla. |
| 920 | K ${ }^{\text {KEEL }}$ Idabel, Okda, |
| 1430 | KBEN Carrizo Sprgs., Tex. |
| 1400 | K EER San Antonio. Tex. |
| 860 | KBET Reno, Nev, |
| 1400 | KBEV Portland, Ores, |
| 1310 | KBFS Belte Fourche, S. Dak. |
| 970 | KBGN Caldwell. Idahe |
| 1600 | KBMC Nashville, Ark. |
| 1430 | KBHM Branson Mo. |
| 1510 | KBHS Hot Springs, Ark. |
| 1240 | KBIF Fresno, Calif. |
| 1150 | KBIG Avalon. Callf. |
| 1240 | KBlm Roswell, N.Mox. |
| 1370 | KBIS Bakersfield, Callf. |
| 1220 | KBIX Muskogee, Okla. |
| 1450 | KBIZ Ottumwa, lowa |
| 1400 | K ${ }^{\text {SJT Fordyce, Ark. }}$ |
| 1340 | KBKR Baker, Oreg. |
| 1010 | KBKW Aberdeon, Wash. |
| 1230 | KBLA Burbank. Calit. |
| 940 | KBLF Red Blull, Calis. |
| 1340 | KBLI Blackfoot. Idaho |
| 1600 | KBLT BIo Lake. Tex. |
| 1480 | KBLU Yuma, Ariz. |
| 1240 | KBLY Gold Beach, Oreg, |
| 1320 | KBMI Henderson. Nev, |
| 610 | KBMN Bozeman, Mont. |
| 960 | KBmO Benson, Minn. |
| 1010 | KBMW Breckinrdg., Minn. |
| 1370 | KBMX Coallnga, Callf. |
| 1450 | KBMY Bitlings. Mont. |
| 1450 | KBND Bend, Orep. |
| 1480 | KBOA Kennett, No. |
| 990 | KBOE Oskatoosa, lowa |
| 1150 | KBOI Boise, Idaho |
| 1400 | KBOK Malvern, Ark. |
| 970 | KBOL Boulder, Colo. |
| 1410 | KBOM Bismark-Mand |
| 1270 | N. Dak. |
| 1410 | KBON Omaha, Nobr |




| C．L．Location |  | Ion | Ke. | C．L． |  | Loc |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KLAK Lakewood，Colo． | $1600$ | KMYYC Mar | 10 | KOSE Osceola， | 860 | KRFO Owatonna，Mlnn． | 99 |
| KLAN Lemover，Calli， |  |  |  | K0SI Au | 430 | KRFS Superior，Nebr |  |
| KLAS Las veoas， | 1230 | KNAK |  | Kosy Texarkana，Ark． | 790 | KRGI Grand Isiand，Neb． | 30 |
| KLBM La Grande， 0 |  | KNAL VIcto | 128 | KOTE Rerous Falls，Mann． | 1250 | KRHO Wes | 50 |
| KLCB Libby，Mont． |  | KNBA Vallejo．Callf． | 1190 | KOTN PIn |  |  |  |
| KLCN Blythevililej A | 810 | KNBE San ranelseo，Callf， |  | KOTS De | 30 | k | 50 |
| KLCO Poteau．okia． |  | KNBX Kilkland |  | KOVC Valley City，N．Dak． | 1220 | KRIG Od |  |
| KLEA Lovlng |  | KNBY Newport，Ark | 1280 | KOVE Lander．Wyo．${ }^{\text {a }}$ | 1930 |  |  |
|  |  | KNCK Conco |  | kovo Pro | 960 | KRIZ Phoonix，Ariz． | 910 |
|  |  | KNCM Mob | 1230 | KOWB La | 1290 | KAKC King city． | 570 |
| KLEN Killieen， | 1050 | KNCY Mebraska city． |  | KOW KOW Esco | 1490 1450 | KRKO Los Angel KRKO Everett | 50 |
| KLEO Withita．Kans． | B0 | KNDC Hett | 1490 | KOXR Oxna |  | KRLA Everadena，Calit， |  |
| KLEX Orotino．${ }^{\text {O }}$ Kaho | 950 1570 | KNOE Az | 1340 | KOY Phoenix，Ariz． |  | KRLC Lewiston，Idaho＇ | 10 |
| KLFO Litchfeld，M | 1410 | KNOY Mars |  | KOYL Odessa，Te． | 1310 | KRLO Da |  |
| KLFT Golden Meadow， |  | KNEA Jonesbo |  | KOZE Lewiston，Ida |  | KRLN |  |
| KLGA Alona，lowa | 1600 | KNEB Seotisbluf． N |  | K02l Chelan，Wash． | 1220 | KRMO Whr | 20 |
| KLGR Redwood Falis，Minn． | ． 1490 | KNED MeAlester． | 1150 | K0ZY Grand Rapids，Minn． | 1490 | KRMG | 40 |
| KLHS Lordsburg，N． |  | KNEM ${ }^{\text {Kravada }}$ |  | ${ }_{\text {KPAK }}$ | 1250 | KRML Ca | 10 |
| KLIB Liberal， |  | K NET Palestine，${ }^{\text {a }}$ | 1450 | KPAL Palm Sprinos，Calif． |  | KRMO ${ }^{\text {KRM }}$ |  |
|  |  | KNEW Spok |  | KPAM Por | 14 |  |  |
| KLio poplar | 1390 |  | 1540 | KPAN He |  | R |  |
| KLIK Jeffierson city， |  | KNEZ | 960 | KPAP Reddin | 1270 | KRNS Burns，Ore | 1230 |
| KLIL Esthervilie，lowa | 1340 | KNIA K noxvilie，lowa | 1320 | KPAS Ba |  | KRNT Oes Moines． |  |
| Lineor | 1400 | KNIM Mary | 1580 | KPBA Plne Blu | 1590 | KROC Rochester， |  |
| 1 P Portl | 1220 | KNIN Wichlta Falls． |  | KPBM Ca | 740 | KROD EIP |  |
| iR Oenver，Colo |  | KNIT Abilene，Tex． | 1280 | KPCA Marked Tree， |  |  | 30 |
| KLIX Twin Fails， | 1310 | KNND Cottage Grove，Oreg． | 1400 | KPON Pan | 40 | KROF Abbevil | 60 |
| KLIZ Bral |  | KNOC Natc | 1450 | ${ }_{\text {KPEG }}$ Spokane，${ }^{\text {W }}$ |  |  |  |
| KLKC Parsons，Kans， | 1540 1570 | KNOG Nogal | 340 | KPEL Laf | 1420 | KROX Cr | 60 |
| KLLL Lubbo |  | KNOK Ft． | 970 | KPEP San | 20 | KROY Sac | 1240 |
| KLMO Longr |  | KNOR Norm | 1400 |  | 1290 |  |  |
| MR La | ， | KNOW Aust | 490 | KPGE Pag | 1340 | KR | 40 |
| KLMS L | 14 | KNOX Grand Forks，N．Dak． |  |  |  | KRRV Shorm | 10 |
| KLMx Clayton，N．Mex |  | K NPT Now | 1310 | PIG Cedar Rapids． |  |  |  |
| KLO Odden．Utah |  | KNUJ New | 1 | K ${ }^{\text {col }}$ |  | KRSI st ． |  |
| Goodiand．Ka | 1240 | KNUZ Hou | 1230 | KPIN Casa Grande | 1260 | KRSL Russ | 0 |
| KLOG Kelso．Wash | 1490 | KNWC S |  |  |  |  |  |
| KLOH Pipestone，MI |  | KNWS Water | 90 |  |  |  |  |
| KLok San Jose，Call | 1170 | KNX | 70 | KPLA Plainview | 1050 | KRTN Ra | 90 |
|  |  |  |  | K |  | KRTR Thermopolis，wyo． |  |
|  |  | KOAL Price |  |  | 1490 | KRUN Bait |  |
| KLOS Albuquer que．N． | 1450 | KOAM Plt | 860 |  |  | KRUX Glend |  |
| KLOW Loveland | 1580 | KOB Albuquerque，N．M．${ }^{\text {ex．}}$ | 770 | KP | 1240 | KRVC Ashland，＇or | 50 |
| LPL Lake Providence，La， | 1050 | K08E Las Cruces，N．Mex， |  | ${ }^{\text {G }}$ P |  | KRVN Lexington．Nebr． |  |
| KLPM MInot，N．Dak． | 1390 |  |  |  |  |  |  |
| KLPR Okla．city |  | KOCA Kilpore，Tex． |  |  |  |  |  |
|  | 1220 | kOCY Okianoma city，Okla， | 1340 | KPOF Denver，Colo． | 9 | KRZE Far | 1280 |
| K | 10 | DE Soilin，Mo． | 1230 | Haw |  |  |  |
|  |  | D1 Cody， |  | KPOJ |  |  |  |
|  |  | K00L The D |  |  | 1440 | KSAM HU |  |
| KLTR Glackwell， | 1580 1240 | KOOY North | 1240 | KP |  | KSAN Sa |  |
| KLUB Salt Lake City．Utah | 5 | KOEL |  | KPON Anderson，Ca |  |  |  |
| kLUE Longv | 1280 | KOFA | 12 | ${ }_{\text {KPO }}{ }_{\text {KPOw }}$ | 1370 | KS | B0 |
| ， |  | K0Fi Kallispeli，Mant． | 115 | KPPC Pasadena，Callf． | 40 |  |  |
| UV Haynesvi |  | KOFO Ottawa，Kán | 12 |  |  | KSCO San |  |
| KLVL Pasadena， | 1480 | KOFY San Mateo． |  | KPRB Redmond．Ores． | 240 | KSD St． |  |
| KLwN Lawrence． | 13 | KOGA Ogall | 930 | KPRC Hous |  | KSDN Aberdoen，S．Oak |  |
| WT Lebanon | 12 | K0GTO | 630 | KPRRL |  | San Dlepo，Calit． |  |
| YO Bakersfield，Calif． | 1350 | K0HO |  | KPRO RIV |  |  |  |
| ，Hamilton，Mont． |  | 左 | 1170 |  |  |  |  |
| YK Spokan |  |  |  |  |  | IS |  |
| KLYR Clarksvilie， | 1360 | Koin Por | 1290 | KPST Pres | 1260 | KSEK Pitts | 1340 |
| KLZ Denver．Co |  |  |  | KPTL Cars | 1300 | KSEM Moses Lake，Wash． |  |
| KMA Shenandoah，lo |  | KOKA Shre | 帾 | kPUG B | 70 | KSEN Shelby Mont． |  |
| KMAD Madill，Okla． |  | KOKE Austin．Tox． |  | krao Austin．Minn． | 70 | kSEO Dur | 50 |
| KMAE Mckinney | 16 | KL Okmulgee， 0 | 1240 | kQdi spokane．Wash | 1280 |  |  |
| KMAK Fresno．Calif． | 1340 | K0kO Warrensburg，M | 1450 | Kad bismari | 1350 | KSEW Sith |  |
| KMAN Manhat |  | KOKY Little Rock． |  | KOEN Roseburg，Or | 1250 | KS |  |
| （MAQ Maquoketa， | （1320 150 | KOL Seat | 1300 | KOEO Albuquerque，N．Mex． | 920 | KSFE Needles．Cal | 0 |
| KMBC Kansas city． | k | KOLD Tueson， | 1450 | Kams Redding．Ca | 00 | KSFo San Francisco，Calif． |  |
| KMBL Junction．${ }^{\text {Kiox．}}$ | 1450 | KOLJ Quanah，Tex |  | KQTE Mlssoula，M |  |  |  |
| BY Monterey，C |  | K0lo fan | K | Katr Es |  | KSID Sidney，Nobr， |  |
| KMCO Fairneld， 10 | 1240 K | KOLR Steriling，Colo， 4 | 1490 | Ka | 1410 | KSIG Crowley．La | 50 |
| CM meminnullo．Oreg． | 1260 | K0LS Pryor，okla． |  | kRAC | $1270$ | KSIL Silver City，N．M0x． |  |
|  |  | LT Seotshlun，Nebr． | 1320 K | KRAE Cheyenne，wyo， | 480 | KSIM Sikeston，Mo． |  |
| KMDO Ft．Sc | k | K0MA Mobridge． |  |  | 5 | KSIR Wemita，Ka |  |
|  |  | ME Tulsa． 0 |  | Krak Stockton，Calif． | 40 | KSIW Wood |  |
| O Omaha |  | mo Seattie，w |  | KRAL Ra | 1240 |  |  |
| MET Paradise，Calli |  | KOMW 0 m | K | （ram las vepas．Ney | 20 | KSİ |  |
| KMGM Albualioraue，N．Mex． |  | MY Watsonville，Calif． | 1340 | xran |  | KSKI Sun Valloy，Idaho |  |
| KM HT Marshall，Tex， |  | KONE Reno．Nev． |  | kray |  |  |  |
| Mil Cam | 1330 | KONG Visalia | 硡 | KRAZ Albuquergue，N．Mex． |  |  |  |
| MMIN |  | KONI Spanish Fork，Utah 1 | 1480 | KRBA | 1340 | KSLAM Salem，Oreg． | 13 |
| MIS | 1050 | NO |  | R |  | Opelousas， |  |
| （MJ Fresno，Calif． | 580 | NP P |  | R8i st． | 10 | $\checkmark$ Monto Vista． | 12 |
| M MLB Monroo． | 1440 | K00D Honolut |  | REN Red Lodge | 1450 | KSMA Santa Maria，Call | 12 |
| KMMJ Grand island，Nebr． | 750 | K00k Bil | K | RRBO Las | 1050 | KSMN Mason Citto |  |
| KMNS SToux Cily， 10 |  | K000 0 | 960 K | RCO Prineville，－Or | 690 | KSNB Santa Barbara，Calif． |  |
| KMON Great Falls， | 5600 | k0 | 30 | KRG Reddi | 1230 | KSNY St |  |
| MOP Tuc | 1330 | k0 | K | RDo Colo．Sprinas，Col | 10 | KSO Das Moines．Iow |  |
| MOR Littleton， | 10 | kor Alt | k | RDU | 70 | KSOK Arkansas Ci |  |
| mox |  | K00r Bellingham，Wash． | 550 |  | 1240 | KSON | 40 |
| MPC Los Anoeles．C |  | K0RA | 240 | Bert |  | ksoo Sid |  |
| KMRC Morgan Clity，La， | 1430 | R ${ }^{\text {R }}$ | 140 | 8 |  | kSOP Sall Lake city，Utah |  |
| KMRS Morris． | 1570 | KORE Eugene，Oreg． | 910 K | REH Oal | 900 | KSOX Raymondvillo．Tex． |  |
| KMSL Ukiah，Callf． | K00 | Kork |  | REI Farminoton，mo． |  | kSPA |  |
| KMUL Muleshoe，Tex． |  | Korl honolulus．Hawail | K | REM Sookane．Wash． | 70 | KSPI S |  |
| MUR Murray，Ut | K | KORN Mitchell．S．Dak． |  |  |  | KSPL Diboll，Tex． |  |
| MUS Muskogee．Okla．I | 1380 KO | KORT Gran peville，Idaho | 30 | REW | 30 | dibli，Tox |  |
|  |  | KOSA Ddessa，Tox． 12 |  | REX Grand Juno．，Colo． |  | 10 LOC | 171 |








## Mexican and Cuban AM Stations

Mexican stations audible in the Southwest; the more powerful Cuban stations

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Location \& exi \& \& W.P. \& \begin{tabular}{l}
Locaflon \\
N. Casas Gra
\end{tabular} \& \begin{tabular}{l}
C.L. \\
ndes XET
\end{tabular} \& \begin{tabular}{l}
Ke. \\
1010
\end{tabular} \& W.P.
\[
250
\] \& Location NU \& C.L. \& Kc. ON \& W.P. \& Location \& \[
\begin{aligned}
\& \text { C.L. } \\
\& \text { XERG } \\
\& \text { XEXD }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { Kc. } \\
\& 1090 \\
\& 1370
\end{aligned}
\] \& \[
\begin{array}{r}
\text { W.P. } \\
2500 \\
50000
\end{array}
\] \\
\hline \multicolumn{4}{|l|}{BAJA} \& \multicolumn{4}{|c|}{COAHUILA} \& Linares Monterrey \& \[
\begin{aligned}
\& \text { XER } \\
\& \text { XEG }
\end{aligned}
\] \& \[
\begin{array}{r}
1260 \\
1050 \\
\hline
\end{array}
\] \& \[
\begin{array}{r}
250 \\
150000
\end{array}
\] \& Reynosa \& XEOR \& 1390
590 \& 1000
5000 \\
\hline Cuervos \& \& \& 1000 \& Cludad Acuna \& AHOI \& 1010 \& 1000 \& \& XEH \& 1420
990 \& 1000
5000 \& Rio Bravo
Tampleo \& XEFD \& 1170
810 \& 1000
50000 \\
\hline El Saugal \& XEOX \& 1010 \& 500 \& Monelova \& XEMF \& 1260 \& 250 \& \& XEAR \& 1480 \& 1000 \& \& \& \& \\
\hline Ensenada \& XEPF \& 1400 \& 250 \& Pledras Negras \& SEM. \& 920 \& 1000 \& \& XEAW \& 1280 \& 1000 \& \& \& \& \\
\hline \multirow{5}{*}{Mexlcall} \& XEXK \& 920 \& 250 \& \& XEMU \& 580 \& 5000 \& \& XEFB \& 630 \& 5000 \& \& Uod \& \& \\
\hline \& XEA \& 1050
1340 \& 5000
250 \& Sabinas
Saltillo \& \[
\begin{aligned}
\& \text { XEBX } \\
\& \text { XESJ }
\end{aligned}
\] \& \[
\begin{array}{r}
610 \\
1250
\end{array}
\] \& \[
\begin{array}{r}
5000 \\
500
\end{array}
\] \& \& \[
\begin{aligned}
\& \text { XEMR } \\
\& \text { XEOK }
\end{aligned}
\] \& \[
\begin{array}{r}
1370 \\
920
\end{array}
\] \& \[
\begin{aligned}
\& 500 \\
\& 500
\end{aligned}
\] \& \multirow[t]{7}{*}{Camaguey} \& \& \& \\
\hline \& XEAQ \& 910 \& 250 \& \& XESG \& 1510 \& 1000 \& \& \& \& \& \& CMJB \& \[
\begin{aligned}
\& 880 \\
\& 920
\end{aligned}
\] \& \[
\begin{aligned}
\& 1000 \\
\& 5000
\end{aligned}
\] \\
\hline \& XECL \& 990 \& 5000 \& Torreon \& XEBP \& 1310 \& 5000 \& SAN \& IS P \& TOS \& \& \& CMJN \& 960 \& 1000 \\
\hline \& XEGE \& 1150 \& 1000 \& VIlla Aeuna \& XEDH \& 1340 \& 250 \& \& \& \& \& \& CMJE \& 680 \& 1000 \\
\hline \multirow[t]{7}{*}{Tijuana} \& XETEA \& \& \[
\begin{array}{r}
250 \\
50000
\end{array}
\] \& \& ERF \& 1570 \& 250000 \& Sen Luis P \& XE \& 540 \& 150000 \& \& CMFA \& 1110 \& 1000 \\
\hline \& XEAU \& 1470 \& 5000 \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{DISTRITO FEDERAL}} \& \& \& \& \& \& CMJR \& 1030 \& 1000 \\
\hline \& XEAZ \& 1270 \& 500 \& \& \& \& \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{SONORA
Agua Prieta XEAO \(1490 \quad 250\)}} \& \& CmJC \& 1000 \& 1000
1000 \\
\hline \& XEBG \& 1550
950 \& 1000
2500 \& Mexieo City \& \& \& \& \& \& \& \& Camajuanl \& CMHD \& 890 \& 1000 \\
\hline \& XEGM \& 950
860 \& 2500
5000 \& \& \[
\begin{aligned}
\& \text { XEN } \\
\& \text { XE }
\end{aligned}
\] \& \[
\begin{aligned}
\& 690 \\
\& 940
\end{aligned}
\] \& 20000
150000 \& Adua Prieta \& XEFH \& 1310 \& 1000 \& Ciego de Avil \& ila CMJY \& 760 \& 1000 \\
\hline \& XEXX \& 1420 \& 2000 \& \& XEW \& 900 \& 250000 \& Cananea \& XEFQ \& 980 \& 500 \& \& CMJT \& 700 \& 1000 \\
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{CHIHUAHUA}} \& \& XEX \& 730 \& 500000 \& \multicolumn{4}{|l|}{Cludad Obregon} \& \& CMSS \& 800 \& 1000 \\
\hline \& \& \& \& \& XEFR \& 1530 \& 5000 \& mosilio \& XEBH \& 920 \& 5000 \& Cionfuegos \& CMHN \& 680 \& 1000 \\
\hline Chlhuahua \& XEM \& 1390 \& 500 \& \& XELA \& 830 \& 10000 \& \& XEDL \& 1250 \& 500 \& Consulacion \& Del Sur \& 880 \& 1000 \\
\hline \& XEBU \& 620 \& 1000 \& \& XELZ \& 1440 \& 5000 \& \& XEDM \& 1580 \& 50000 \& Cruces \& CMAK \& 1210 \& 1000 \\
\hline \& XEBW \& 1280 \& 1000 \& \& XEMX \& 1380 \& 5000 \& \& XEHQ \& 590 \& 500 \& Guantan \& CMKS \& 1070 \& 1000 \\
\hline \& XEFI \& 580 \& 1000 \& \& XENK \& 620 \& 5000 \& Majdalenar \& XEDJ \& 1450 \& 100 \& Habana \& CMW \& 590 \& 2500 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Cludad Camargo}} \& \multirow{3}{*}{,} \& XEOY \& 1000 \& 50000 \& \& XETM \& 1350 \& 1000 \& \& CMCY \& 550 \& 15000 \\
\hline \& \& \& \& \& XEPH \& 590 \& 5000 \& Nogales \& XEHF \& 1370 \& 5000 \& \& CMO \& 630 \& 25000 \\
\hline \& XEHA \& 580 \& 1000 \& \& XEQK \& 1350 \& 1000 \& San Luls \& XECB \& 1950
1400 \& 250
250 \& \& CMCU \& 660 \& 1000
50000 \\
\hline \multirow[t]{3}{*}{Ciudad Dellela} \& \& \& \& \& XEQR \& 1030 \& 10000 \& Santa Ana \& XEAB \& \& 250 \& \& CMCD \& 760 \& 10000 \\
\hline \& XEJK \& 1340 \& 250 \& \& XERCN \& 1110 \& 1000 \& \multicolumn{4}{|c|}{\multirow[t]{2}{*}{TAMAULIPAS}} \& \& CMCH \& 790 \& 10000 \\
\hline \& XEF \& 1420 \& 250 \& \& XERH \& 1500 \& 50000 \& \& \& \& \& \& CMBZ \& 830 \& 5000 \\
\hline Cludad Juarez \& XEJ \& 970 \& 5000 \& \& XERPM \& 660 \& 10000 \& \multirow[t]{2}{*}{Matamoros} \& \multicolumn{2}{|l|}{XEO 970} \& 1000 \& \& CMBL \& 860 \& 15000 \\
\hline \& XEP \& 1300 \& 500 \& \& XESM \& 1470 \& 10000 \& \& XEAM \& 1310 \& 250 \& \& CMCF. \& 910 \& 10000 \\
\hline \& \(X E F V\) \& 1240 \& 250 \& \& XEUN \& 860 \& 5000 \& \& XEMT \& 1340 \& 250 \& \& CMBF \& 950 \& 5000
5000 \\
\hline \& XELO \& 800 \& 150000 \& \& \& \& \& Nuevo Laredo \& XEAS \& 1410 \& 250 \& \& CMCK \& 98 \& 5000 \\
\hline \& XEWG \& 1490 \& 250 \& \multicolumn{4}{|c|}{DURANGO} \& \& XEBK \& 1340 \& 100 \& \& \& \& \\
\hline HIdalgo \& XEJS \& 1150

1 \& 1000 \& Durango \& XEDU \& 860 \& 1000 \& \& XEFE \& 790 \& 1000 \& WHITE'S R \& RADIO L \& G \& 177 <br>
\hline
\end{tabular}

| Lecation | C.L. | Ke. | W.P. | Locafion | C.L. | Ke. | W.P. | Location | c.L. | Ke. | W.P. | Location | c.l. | Ke. | W.P. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CMBQ | 1010 | 5000 | Marlanao | CMZ | 1560 | 5000 |  | CMHC | 1410 | 1000 |  | CMKL | 800 | 2000 |
|  | CMCX | 1060 | 10000 | Neuvitas | CMIJ | 1300 | 1000 |  | CMHA | 640 | 15000 |  | CMKW | 1000 | 2000 |
|  | CMCA | 730 | 10000 | Pinar del Rio | CMAB | 740 | 5000 |  | CMHW | 810 | 1000 |  | CMKR | 1090 | 1000 |
|  | CMCB | 1330 | 1000 |  | CMAF | 680 | 1000 |  | CMHO | 1310 | 1000 |  | CMKU | 630 | 2000 |
| Ho | CMKJ | 730 | 5000 |  | CMAN | 840 | 1000 |  | CMHM | 1130 | 1000 |  | CMDL | 1150 | 1000 |
|  | CMKP | 670 | 1000 |  | CMAQ | 920 | 1000 | Sancti Splritus |  |  |  |  | CMKN | 930 | 1000 |
| Holguln Orte | CMKM | 560 | 5000 | Sayua La Gran | de |  |  |  |  |  |  |  | CMKB | 1170 | 1000 |
|  | CMKV | 600 | 1000 |  | CMHA | 1280 | 1000 | Santiago | CMDA | 1320 | 1000 | Vietoria | Tunas |  |  |
|  | CMKO | 9770 | 1000 | Santa Clara | CMHI | 570 | 10000 |  | CMKC | 770 | 1000 |  | CMDQ | $840$ | $1000$ |
|  | CMDC | 770 | 1000 |  | CMHG | 670 | 1000 |  | CMOB | 680 |  |  |  | $1520$ | 1000 |

U. S. FM Stations by States




## U. S. FM Stations by Call Letters

C.L. Location

KAAR Oxnard, Callf. KABC.FM Los Angeles, Callf. KACE-FM Riverside, Callf. KADI St. Louis, Mo. KAFE Oakland, Calif. KAFI Auburn, Calif. KAFM Salina, Kans. KAIM-FM Henolulu, Hawall KAJS Newport Beach, Callf. KAKC Tulsa. Okla.
KAKI San Antonlo, Tex. KALB. FM Alexandria, La. KALH Denver, Colo. KALW San Francisco, Calit.

## C.L. Location

KAMS Mammoth Spring, Ark.
KANG St. Louls, Mo.
KANT-FM Lancaster, Calif.
KANU Lawrence, Kans.
KANW Albuquerque, N. Mex. KAPP Redondo Beach. Calif, KARK Littlo Rock. Ark. KARM-FM Fresno, Calif. KARO Houston. Tex. KASK-FM Ontario, Calif. KASU Jonesboro, Ark.
KATT Woodland, Calif.
KATY-FM San Luis Obispo, Calif. KAZZ Austin. Tex.
KBAY San Francliseo, Calif. KBBI Los Angeles, Callf.
KBBL Wichita, Kans.
C.L.

Location
KBBM Hayward, Callf. KBBW San Olego, Callf. KBCA Los Angeles. Calfif. KBCL. FM Shreveport. La KBC0 San Francisco. Calif. KBEC. FM Waxahachio. Tex KBEE.FM Modesto. Calif. KBEY Kansas City. No. KBFI Boise, Idaho KBFM Lubbock. Tex. KBIM-FM Roswali, N. Mex. KBIa Los Angeles, Calif. KBMF Pampa, Tex. KBMS Los Angeles, Callf. KBOA-FM Kennett, Mo.
KBOI-FM Boise, Idaho. KBOI-FM Boise, Idaho
KBOY.FM Medford, Oreo.
C.L. Locailon

KBTM-FM Jonesboro, Ark KBUZ-FM Mesa, Ariz. KBYR.FM Anchorage, Alaska KBYU-FM Provo, Utah KCAL.FM Redlands, Calli. KCBH Beveriy Hills, Calif. WCFM St. Louts. Mo. (s) KCHV-FM Coachella, Callf. KCJC Kansas City, Kans. KCMB.FM Wichita, Kans.
KCMI Los Angeles, Calif.
KCMK Kansas City, Mo. KCMO-FM Kansas City, Mo. (s) KCNW Sacramento, Callf.

## C.L. Lecation

KCOM Omaha, Nebre
KCPA. FM Dallas. Tex
KCP Tacoma, Wake Ctiy, Utah KCRA. FM Sacramento, Calif. KCRW Santa Monica, Celif.
KCSM San Mateo, Callf
KCUF Redwood Clity. Call?
CUI Pella, la.
KGUF.FM Kansas Clty, Mo.
KCVN Stoekton, Catilf.
KDB-FM Santa Barbara, Callf.
KDOD.FM Dumas, Tex.
KDEF.FM Albuquergue, N. Mex.
KDEN. FM Denver, Colo.
KDFC San Franclsco, Callf.
KDAC Corpus Christi, Tox.
KDMI Des Molnes, Jowa
KDNT.FM Denton, Tex.
KDUO RIverside. Callf.
KDVR Slour City, Ia.
KDWC West Covina, Calif. KEAR San Frantisco, Callif KEAX National Clity, Calli. KEBJ Phoenlz, Ariz
KEBR Sacramento, Call
KEED.FM Springneld-Eugene.
KEEN-FM San Jose, Callf.
KEEZ San Antoni
KEFM Oklahoma city, Okla.
KEFW Honolulu. Hawali
KELE Phoenix, Ariz.
KENO St, Louls, MO.
KERN.FM Bakers nield, Calli.
KETO.FM Seattlo, Wash.
KEX.FM Portland, Oreg
KEZE Anahelm. Calif.
KFAB-FM Omaha, Nobr.
KFAM.FM Los Angeles, Callf
KFBK-FM Sacramento, Callip
KFCA Phoenix. Ariz.
KFH FM Boone. owa
KFP1 Sala Anal Kans
KFJC Santa Ana, Calit.
KFJZ Fort worth, Tex.
KFMB-FM San Diego, Callf.
K FMC Portland, Oreg.
KFMH Colorado Springs, Colo.
KFML.FM Denver, Colo.
KFMM Tueson. Arlz.
KFMN Abilens Ter
KFMP Port Arihur, Te
KFMQ Lincoln. Nebr.
KFMU Los Angoles, Callf. (s)
KFMW San Bernardino. Callt
KFMX San Dlano, Calif.
KFMY Eugene, Oreg. (s)
K FNB Dklahoma City, Okla
KFOX. FM Long Beach, Calit
KFRC.FM San Franelsco, Calif
KFUO.FM Clayten. No.
KGAF.FM Gainesville. Tex
KGBN.FM Caldwell, Idaho
KGFM Edmonds, Wash.
KGGK Garden Grovo. Calif.
KGLA Los Angoles. Callf.
KGMG Portiand, Oreq.
KGMI Bellingham, Wash.
KGNC. FM Amarillo Tex.
KGO.FM San Franclsco, Callp,
KGPO Grants Pass, Oreo. KGUD.FM Santa Barbara, Calif.
KHBL Plalnview, Tex.
KHBA-FM Hillsboro. Tex.
KHCB Houston. Tox
KHFM Albuquerque, N.Mex.
KHGM Houston, Tex,
KHIP San Franelseo, Calif.
KHia Saeramento. Callf.
KHJ-FM Los Angoles, Calif.
KHMS EI Paso, Tex.
KHOF Los Angeles, Calif.
KHOL.FM Kearney. Holdred
KHOL.FM Kearney-Holdredge,
K HOM-FM Turlock, Callf.
KHPC Brownwood. Tex.
KHQ.FM Spokane, Wash.
KHSC Arcata, Callif.
KHUL Housion. Tex.
KHYI Fremont, Calit
KICN Omaha, Nebr.
KICN Omaha, Nebr.
KIEM Eureka, Calif.
KIEM Eureka, Cali
KIMP.FMM Mt. Pieasant. Tex
KING.FM Mt. Pleasant.
KING.F
K 1000 klahoma, 0 kla.
KIRO.FM Seatite, Wash
KISA Kansas City. Mo.
KISS San Antonto. Tex.
KISW Seatlie, Wash.
KITT San ologe. Calif.
KITY San Antonio. Tex.
KIXL.FM Dallas, Tox.(s)

## C.L. Locotion

KAZ Alameda, Callt KJEM.FM Okla. Clty, Okla. KJLM San Dlego, Callf. KJML Sacramento, Calif KJPO Fresno, Callf.
KJRG Newton, Kans.
KJSB Houston, Tex
KLAC.FM Los Angeles. Calf.
KLAY-FM Tacoma. Wash.
KLCN. FM Blythevillo, Ark
KLFM Beverly Hills. Calif.
KLIR.FM Denver, Colo.
KLIZ.FM Brainerd, Minn. KLOA.FM RIdgecrest. Calif K LON Long Beach, Galli. KLSN Santle, Wash. (s) KLUB.FM Sait Lake City, Utah KLYO-FM Bakersfiold, Calth. KLYN.FM Lynden, Wash, KMAK-FM Fresno. Calli. KMAX Sierra Madre, Calif. KMCP Portland. Oreg.
KMCS Seattle, Wash.
KMER Fresno, Callf.
KMFM Tularosa, N. Minx.
KMHT Marshall. Tex
KMJ.F M Fresno. Callf.
KMLB-FM Monroe, La,
KMMK Little Rock. Ark.
KMOX-FM St. Louls. MO.
KMUW Wlehita. Kans.
KMYC.FM Marysville. Calif.
KMUZ Santa Barbara, Calli.(s)
KNBC.FM San Francisto, Calif.
KNDE.FM Aztec, N.Mex.
KNDX Yaklma, Wash
KNEB. FM Scottsbluff, Nebr. KNER Dallas. Tex.
KNEW.FM Scottsbluff, Nebr.
KNFMI MÍdland. Tex.
KNFP LaSierra, Cali
KNIK.FM Anchorage. Alaska KNOB Long Beach, Cali KNX.FMi Los Angeies, Callf. KOA.FM Denver, Colo
KOCW Tulsa, Okla.
KOGM-FN Tulsa. Okla
KOIN. FMI Portiand, Oreg.
KOKH Oklahoma Cíty, Okla.
KOL.FM Seatlle, Wash.
KOL.FM Soatifil Wash
KONG.FM Visalla, Calif.
KOOL.FM Phoenix, Ari:。
KOSE.FM Osceola, Ark.
KOSE-FM OSceola,
KOST Dallas. Tex.
KOSU.FM Stullwater. Okla.
KOTN. FM Pine Bluff Ark
KOY.FM Phoenlx. Arly.
KOZE.FM Lewiston. Idaho
KPAT Albuquerque. N. Mox.
KPCS Pasadena. Callf
KPEN Atherton, Callf. (s)
KPFA Borkoley. Callif.
KPFB Borkelcy, Calif.
KPFK Los Angeles. Callf.
KPFM Portland, Oreq. (s)
KPGM Los Altos, Calif,
KPLR-FM Si. Louls, Mo.
KPOI.FM Honolulu, Hawall
KPOJ.FM Portland, Oreg.
KPOL.FM Los Anjoios. Callf.
KPPS.FM Parsons, Kans.
KPRI San Dlego. Calli. (s) KPRN Seattle, Wash,
KPSD Dallas, Tex.
KPSR Palm Surings. Calif.
KQAL-FM Omaha, Nebr. (s)
KQBY.FM San Franeisco, Callf.
KQFM Portland, Oreg.
KQIP Odessa, Tor.
KQRO Dallas. Tex.
KQUE Houston, Tex.
KQXR Bakersfield, Calif. KRAK. FM Stockton, Calif. KRAM.FM Las Vagas, Nev. KRBE Houston. Tex.
KRCC Colorado Sarings. Colo. KRCW Santa Barbara, Callf. KRE.FM Berkeley, Calif. KREM.FM Srokand, Wash, Colo. KREX.FM Grand $\begin{aligned} & \text { KRFM Fresno. Callf. }\end{aligned}$
KRHM Fresno. Calif. Calif
KRHM Los Angoles, Calif.
KRIC.FM Beaumont. Tox.
KRKD.FM Los Angeles, Callf. KRKH.FM Lubbock. Tox. KRKR-FA Lubbock.
KRLD.FM Dallas. Tex. KRMD.FM Shrevethort
K RON.FM San Francisco. Callif, KROS.FM Cilnton. lowa KROS. FM Clinton. lowa
KROW Santa Barbara, Calif. KROW Santa Barbara, Calif. KRPM San lose. Calit KRPM San jose. Calir. KRRC San lose. Calf. N. Moy KRYM Eugene. Oreg.
KRVM Eugene Oreg Calif.
KSDB:FM Manhatian. Kans.
KSDS San Diedo, Calif.
KSEA San Dlego, Calli.
KSEO.FM Durant. Okla.
KSFM Dallas. Tex. (s)
C.L.

Lecotion
KSFV San Fernando, Calli. KSFX San Francisco, Calli.
KSHE Greslwood. Mo.
KSHS Colorado Springs. Colo KSJO.FM San lose, Callf. (s) KSL.FM Salt Lake Clty, Utah KSLA Seattle, Wash. (s)
KSLH St. Louisw Mo.
KSLT Tyler, Tex.
KSMA.FM Santa Maria, Callf. KSO.FM Des Moines. Howa KSPC Claromont, Calif. KSPI.FM Stilwater, Okla. KSPL.FM DIboll Tex. KSRF Santa Monica, Callf. KSTE Emporla, Kans.
$\begin{array}{ll}\text { KSTL.FM } & \text { St. Louis, Molt } \\ \text { KSTN.FM } \\ \text { Stockton, Calit. }\end{array}$
KSUI Iowa City, lowa
KSWI.F M Omaha. Nebr.
KSYN Joplin. Mo.
KTAL Texarkana, Tex.
KTAP Tueson, Arlz.
KTAR-FAl Phoenix, Arlz.
KTBC.FM Austin, Tex.
KTCF Cedar Falls, Iow
KTEC Oretech, Oreg.
KTEC Oretech, Oreg.
KTOM Denver. Colo.
KTIM San Rafael. Callf. KTIS-FM Minneapolis. Mjnn KTJO-FM Ottawa, Kans. KTNT.FA Tacoma, Wash KTOD Mt. Pleasant. Tex. KTOP-FM Toneka, Kans. KTOY Tacoma, Wash.
KTRB.FM Modesto, Callf. KTRH.FM Houston. Tex. KTSR Kansas CIty, Mo. KTWR Tacoma. Wash. KTWR Tacoma. Wash. KTYM-FM Inglewood, Calif. KUDE.FN Oceanside, Callf KUDU.FM Ventura-Oxnard. Calif. KUER Salt Lake CIty, Utah KUFN EI Cajon, Calio. KUGN.FM Eugene, Oreg. KUHF Houston, Tex. KUOA.FM Slloam Sprlngs, Ark. KUOH Honolulu Hawail KUOW Seattle. Wash. KUPD.FA Tempe. Ariz. K USC Los Angoles, Calir. KUT.FM Austin. Tox. KUTE Glendale. Callf. KVCR San Bernardino, Calli KVEC.FM San Luis Obispo, Callif. KVEN.FM Ventura. Callif KVFM San Hernando, Calif KVIL Highland PK., Tex KVOF. FM El Paso, Tex KVOK Honolulu. Hawail KVOR-FM Colorado Springs, Colo. KVSC Logan. Utah
KVTT Dallas. Tox.
KWAR Waveriy, lowa
KWAX Eugene, Orego
KWFAi Minneanolls, Minn KW G.FM Stockton, Calif. KWGS Tulsa. Okla.
KWIX St. Louls, Mo
KWIZ. FAi Santa Ana, Callf. KWJB-FM Globo, Ariz.
KWKH.FM Shreveport, La,
KWME Walnut Creok. Calif. KWME Walnut Creek
KWMO Odessa, Tex.
KWMO. Odessa, Tex.
KWOC.FM Poplar Bluf. Mo,
KWPC-FM Museatine. 1owa
KWPM.FM West Plains, Mo
KXFM Form Worth. Tex.
KXJK.FM Forrest City. Ark KXLU Los Anpetec.
KXRQ Sestamento. Callf. KXRQ Sacrame cal KXTR Kansas City, No.
KYA.FM San Franelsce, Callf.
KYEW Phoenix. Arlz.
KYFW Oklahoma CIty, Okla
KYSM.FM Mankato. Minn
YW. FM Cleveland. Ohio
KZFM Cortez. Coll
KZOM Oklahoma city, Okla.
KZUN.FM Opportunity. Wash WAAB-FM Woreester, Mass, WAAM.FM Parkersburg, W.Va WABC.FM New York. N. Y. WABE Atlanta, Ga.
WABI.FM Bangor. Malne WABO Cleveland Ohlo WABX Detrolt. Mich. WABZ.FM Albemarlc. N.C. WAEB.FM Cincinnati, Ohio WAEF Syracuse, N.Y.
WAER Syracuse, N.Y.
WAHR.FM Miami Beach: Fia WAIC San Juan. P. R.
WAlR-FM Winston-Salem, N.O
WAIV Indianapolls, Ind
WAJC Indianapolis, Ind.
WAJM Montemary, Ala
WAJP Jollat. III.
WAJR.FM Morgantown, W. $\mathrm{V}_{3}$ WAKR.F A Akron. Ohlo
WALK FM Patchooue

C WASH Washington. O.C. WATR.FM Waterbury, Conn. WAUG.FM Aupusta. Ga. WAUX.FM Waukesha, Wis. WAVI.FM Dayton. Ohio WAVQ Atlanta. Ga,
WAVU.FM Albortville, Ala. WAVY.FM Porlsmouth, Va,
WAWZ.FM Zarephath, N.J. WAYL MInneatrolis. Minn. (s) WAYZ. FM Waynesboro. Pa. WAZL. FM Hazelion, Pa. W AZZ Pittsburgh, Pa. WBAA.FM W. Lafayette, Ind. WBAB.FM Babylon, ${ }^{\text {W }}$ WBAI New York. N. WBAB New York. N.Y.
WBAP.FM Ft. Worth, Tex. WBAY.FM Green Bay. Wis WBBB.FM Burlington, N.C WBBC Jacksen. Mich. WBBF.FM Rochester, N.Y. WBBO.FM Forest City. N.C WBBQ.FM Augusta, Ga. WBBR.FM E. St, Louls. Ill. WBBW FM Younotow. WBCB. FM WBCI.FM Williamsburg Va, Pa. WBCM.FM Bay City. Miteh. WBCN Boston. Mass.
WBEN.FM Buffalo, N.Y.
WBET.FM Brockton, Mass.
WBEXX.FM Chillicothe. Ohio W BEZ Chicagn. III.
H WBFO Buffalo. N.Y.
WBGU Bowling Green. Ohlo
WBIE.FM Marletta. Ga.
WBIR.FM Knoxville. Tenn.
WBIV Wethersfield. N.
WBKV.FM West Bend, wis.
WBKW Beckley, W.Va.
WBKY.FM Sning
WBMI Meridan, Conn,
WBNS.FM Columbus, Ohio (5)
WBOE Cleveland, Ohlo
WBOR Brunswick. Maine
WBOS.FM Brookline, Mas
WBRB.FM MI. Cloments, Mith.
WBRC Birmingham, Ala.
QRSM. WM Now Bedford. Mass.
WBST Munclo. Ind.
WBUF Bufalo, N. Y.
WBUR Boston, Mass.,
WBUT.FM Butior, PA.
C.L. Location WCSC-FM Charleston, S.C. WCSI-FM Columbus, Ind. WCSQ Central Square, N.Y WCA.FM Andalusia, Ala, WCTM Eston, Ohio
WCTW.FM New Castle, Ind. WCUM EM Cumberland WCUY-FM Cloveland Hits.. Onio WCWM WIlliamsburg, Va WDAC Lantaster, Pa. WDAS-FM Philadelphla, Pa. WDBJ-FM Roanoke, Va. WDBO-FM Orlando, Fla WDBQ.FA Dubuque, low WDDE Hamden, Conn
WDDS-FM Syracuse, N.Y. WDEL-FM Wilmington, De WOF State College, Pa WOGO Claveland, Ohio WDHA-FM Dover, N.J.(s) WDHF Chicago, Ili.
WDiA-F M Memphis. Tenn WDJK Allanta, Ga.
WDMB-FM Statesvilie, N.C. WDNC.FM Durham. N.C. WOOC-FM Prestonsburg, Ky. WDOK-FM Cleveland, Ohio WDOV-FM Dover, Del WDRC-FM Hartiord, Conn WDSC.FM Dillon. S.C. WDSU-FM New Orloans, La WOTM Detrolt, Mich. (s) WOTR Detroit, MIch.
WDUB Granville, Ohlo
WDUN-FM Gainesville, Gs. WDUQ pittsburgh, Pa. WDUZ-FM Green'Bay, wis. WDWS-FM Champaign, III. WEAV-FM Plattshurgh, N.Y. WEAW-FM Evanston, III. WEBH Chicago, III. WEBQ-FM Harrisburg. III. WEBR-FM Buffalo, N.Y WECW EImira, N. Y, WEED.FM Rocky Mount. WEED-FM Rocky Mount. N.C. WEEP-FM Plttsburgh, Pa WEEA W WEFM Chleago, III. (s)
WEGO.FA1 Concord, N,C VEHS Chleago, III.
WEIV ithaca. N.Y
WELF Glen Ellyn, WII WELG Elen EII. II.
WEMP-FM Mliwaukee, Wis. WENR-FM Chicago, III. WEPM-FM Martinsburg, W,Va. WEPS EIgln. IH.
WEQR Goldshoro, N.C.
WERE.FM Cloveland, Ohlo WERI-FM Westerly, R.I. WERS Boston, Mass.
WESC.FM Greenville, S.C.
WETL South Bend, Ind.
WEVC Evansville, Ind
WEVD.FM New York, N. Y.
WEWO.FM Laurinburg, N, C
WFAA-FM Dallas, Tex.
WFAN Washlngton, D.C.
WFAS-FM White Plains, N. Y
WFAU-FM Augusta, Maine
WFAW Fort Atkinson, Wis
WFBE Flint, Mleh.
WFBG-FM Altoona, Pa,
WFBM.FM Indianapolis, Ind. WFES.FM Winston-Salem, N.C. wFC Frankiln, ind. WFCI Miamisburg, Ohio WFCR Amherst, Mass. WFDS-FM Baltmore, Md WFFM Cincinnati, Ohio WFGM.FM Fitchburg, Mass.
WFHA.FM Red Bank WFHA-FA Red Bank. N.J. WFHR-FM Wisconsin Rapids, Wis, WFID Rio Piedras, P.R. WFIL.FM Philadelphia, Pa WFIN-FM Findlay. Ohfo WFLA.FM Bloomington, Ind. WFLM Ft. Lauderdale, Fla. WFLNorm Philadelphia, Pa. (s) WFLO Farmvilie, Va
WFMA Rocky Mount, N.C WFMB Nashville. Tenn. WFMD-FM Frederick, Md WFME Detroit, Mich
WFMF Chitado, III.
WFMF.FM Culiman, Ala,
WFMi Montpomery. Ala.
WHITE'S RADIO LOG
C.L. Location WFML Washlngton, Ind WFMM.FM Baltimere, Md WFMQ Chitago, III. WFMS Indianapolis, Ind. WFMU Kast Or WFMU East Orange, N.J. WFMW-FM Madisonville, Ky WFMX Statesville, N.C WFNC.FM Fayot Pevilie, N.C. WFNQ Hartford, Conn. WFNS-FM Burlington, N.C. WFOB-FM Fostoria. Ohlo WFOL Hamiliton, Ohio WFPK Loulsville. Ky. WFPL Louisville, Ky WFQM San Juan. P.R. WFRO-FM Fremont, Ohlo WFST-FM Caribou, Maine WFUL-FM Fulton, Ky. WFUR-FM Grand Rapids, Mich. WFUV New York, N.Y. FGA-FM Fraderiekshurg, Va. WGAR-FM Cleveland, Ohlo WGAU.FM Athens. Ga. WGAY Sllver Spring, Md. WGBH.FM Cambridoe, Mass. WGBI-FM Seranton, Pa WGCB-FM Red Llon, Pa. WGCS Gashen, Ind.
WGEM-FM Quincy, III. WGFM Schenectady. N.Y. (s) WGGC Glasgow. Ky. WGH-FM Now port News, Va. WGHF Newton, Conn. WGHJ Lawrence, Mass. WGKA.FM Atlanta, Ga. WGLM Richmond, Ind. WGMS-FM Washington, D.C. WGNB St. Petersburg, Fla, WGNC.FM Gastonla, N.C.
WGPA.FM Bethlehem, Ga. WGPA-FM Bethehem, WGPM Defroit, Mich.
WGPS Greensboro. N.C. WGPS Greenstoro. N.C. WGRE Greencastle Ind. WGRV. FM Greenville. Tonn. WGTB.FM Washington, D.C. WGUC CÍncinnati, Ohio WGVE Gary, Ind.
WGWR.FM Asheboro, N.C. WGYA Interlochen. Milch WHA.FM Madison, W
WHAI-FM Greenfeld, Mass. WHAT-FM Philadelphla, P.a WHAV-FM Haverhill, Mass. WHAV-FM Haverhill, Mas
WHBC.FM Canton, Ohio WHBF.FM Rock lisland, III WHBF. FM Rock sland ill
WHCI Hartlord City, Ind. WHCN Hartford City, In WHCU.FM Ithaca, N.Y. WHDH.FM Boston, Mass? WHDL.FM Allegheny, N.Y. WHFB-FM Benton Harbor, mIch. WHFB-FM Bentor Harbor, WHFM Rochester, N. Y. WHFS Bethesda, Md. (s) WHHI Highland, Wls. WHIM-FM Providence, R.I. WHIO-FM Dayton, onlo WHK.FM Cleveland, Ohio WHKW Chilton, WIS
WHKY.FM HIckory, N.C. WHLA Holmen, Wis.
WHLD.FM Nlagara Falls, N. Y. WHLL.FM Hempstead. N,Y. WHLM.FM Bloomsburg, Pa
WHMA.FM Annlston, Ala. WHNC.FM Henderson, N.C. WHO-FM Des Moines, Iowa WHOH Hamilton, Ohio WHOK-FM Lancaster, Ohlo WHOM.FM New York, N.
WHOO.FM Orlando. Fla. WHOS.FM Decatur, Ala WHP.FM Harrisburg, Pa. WHPE.FM High Point, N.C WHPR Hlghland Park, Mleh. WHPS High Point N.C. WHRE-FM Cambridge. Mass. WHRM Wausau, Wis. WHSA Highland Twp., Wis. WHSR-FM Winchester, Mass, WHTG.FM Eatontown, N.J. WHUS Storrs, Conn.
WHYL.FM Carlisle, Pa.
WHYN.FM Springfield. Mass. WHYY Philadelphia. Pa. WIAL Eau Claire, Wis. WIBA.FM Madison, Wis WIBC.FM Indianapolls, Ind. WIBG.FM Philadelphia, Pa. WICB ithaca, N.Y. WIFI Glanside, Pa .
WIKY-FM Evansulite, Ind
WIL.FM St. Louls, Aio.
C.L. Location

WiLL.FM Urbana, ill. WIMA.FM LIma, Ohio WINA.FM Charlottesville, Va. WINE-FM Kenmore, N. Y.
WINF-FM Manchester, Conn. WIPR-FM Miam, Fla. WIPFFM Phladelphia, Pa. WIRA.FM Ft. Pierce, fla, WIRA-FM Ft. Pierce, FIa,
WIRQ Rochester, N.Y. WISH.FM Indianapolis, Ind. WISK Medford, Mass. WISN-FM MIIwaukee, Wis. WISZ-FM Madisón, Wis.
WITA-FM San Juan, P.R. WITH.FM BaltImere, Mid. WITZ.FM Jasper, Ind. WJUS Christiansted, V, W JAS-FM Plitsburgh, Pa. WJBC.FA Bloomington, ill WJBK-FM Otrait Mich WJBK-FM Dotroit, Mich. WJBO-FM Baton Rouge: La WJBR WIImington, Dol. (s) WJCD-FM Soymour, Ind. WJDX-FM Jackson. Miss. WJEF-FM Grand Rapids, Mich. WJEJ-FM Hagerstown, M WJGG Houghton, Mleh. WJHL.FM Johnson city, Tenn, wJiM.FM Lansing, Mich. WJiV Cherry Valley. N.Y. WJJO-FM Chleago, ill. WJLK-FM Asbury Park, N.J. WJLN Birmingham, Ala. WJOF Athens Ala. WJOL-FM Joliet. III. WJR.FM Detroit, Mich. WJW-FM Clevelandr Ohio WJWR Palmyra, Pa. WJZ2 Brideeport. Conn. WKAR.FM E. Lansing. Mich. WIKAT.FM M Mami. Fla, WKAY.FM Glaspow. Ky. WKAZ.FM Charleston, W.Va.
WKBC.FM Winston-Saiem, N.C WKBC.FM Whston-Saiem, N.C. WKBN-FM Youngstown. Ohlo WKBR-FM Manchester, N.H WKBV-FM Richmand. ind. WKCQ Berlln, N.H.
WCR. MM New York, N.Y. WKCS Knoxvilio, Tenn. WKEE.FM Huntington, W.Va, WKEEFFMICa90, III, (s) WKFM Chicaoo, III. (s) WKIP.FM Poughkoonsio, N.Y. WKiS. FM Orlando. Fla, WKIS.FM Oriando, Fia, WKLF.FM Clanton, AB WKLS Mariofta, Ga.
WKMH-FM Dearborn, Mich WKNA Charleston, WiVa. WKOF Hopkinsvile, Ky. WKOP FM Binghamton WKOP-FM Binghamton. N.Y. WKPT.FM Kingsport. Tenn WKRC.FM CIncinnati, Ohlo WKRG-FM Mobile, Ala. WKRT.FM Cortland, N.Y WKSD Kowanee, III. WKTM-FM Maytiold, K WKWK.FM Wheeling. W.Va. WKYB-FM Paducah, Ky. WLAD-FM Danbury, Conn. WLAG.FM LaGrange. Ga. WLAN-FM Lancaster, Pa. WLAP.FM Lexington, Ky. WLBG.FM Laurens-Cilinton, 8. C. WLBH-FM Mattoon, lli. WLBR-FM Lebanon, Pa WLDM Oak Park, Mith. WLEC.FM Sandusky, Ohlo WLET-FM Toceoa. Ga. WLFM Appleton, Wis. WLIN Merrill, Wis. WLIR Hicksvillo, N.Y. (s) WLLH-FM Lowell, Mass. WLNA-FM Peekskil, N.Y
WLOA-FM Braddock. Pa. WLOB.FM Poriland, Malno WLOE-FM Leaksville, N.C. WLOL-FM Minneapolis, Minn. WLOM Chattanooga, Tenn. WLOS. FM Asheville, N.C. WLOV Cranston, R.I WLRJ Roanoke, Va, WMC.FM w amsport, Pa. WMAL-FM Washington, D.C. WMAQ-FM Chićago. III. WMAS-FM Springneld, Mass. WMAX.FM Grand Raplds, Mich. WMAZ.FM Macon, Ga. wMBI FM Ceora, WMBO-FM Auburn, N. WMBE-FM Auburn, Ni,
WMBR.FM Jacksonville, Fla.
C.L.

WMCF Memphis, Tenn. WMCO New Concord, Ohlo WMCR Kalamazoo. Mich. WMDE Greensboro, N.C. WMER Cellna. Ohio WMET-FM MiamI, Fla WMEV.FM Marlon, Va WMFM Madison, WIS. WMFP Ft. Lauderdale, Fla.
WMFR-FM High Point, WMFR-FM High Point, N.C WMGW FM Meadville, Pa. WMHC South Hadley,
WMHE Toledo Ohio WMHL.FM Milwaukee, Wis. WMIT Marion, N.C.
WMIV S. Bristol, N.Y., II. WMIX-FM Mt, Vernon, III WMLW MIlwaukee Wis. WMLW Mliwaukoe, W/a. WMPS.FM Memphis, Tenn. WMRN.FM Marion, Ohio WMRO.FM Aurora III. WMRT Lansíng. Mich WMTH Park Ridge, 111 . WMTI Norfolk, Va.
WMTW-FMMt, Washingtor, N.H.
WMUA Amherst, Mass.
WMUB Oxford, Ohlo
WMUN Muncis, ind.
WMUU.FM Greenvilis, S.C.
WMUZ Datrôlt, Mich.
WMVA.FM Martinsvillo, $V$ a,
WMVO-FM Mount Vernon, ohio
WMZK Detrolt, Mich.
WNAO-FM Norman. Okla
WNAS New Albany, Ind.
WNBC-FM New York, N. Y
WNBF.FM Binghamton, N.Y.
WNBH FM Now Bedford, Mass.
WNCN New York, N.Y.
WNCO. FM Ashland. Ohlo
WNDA Huntsville, Ala.
WNBD.FM Daytona Beach, Fla
WNEM.FM Bay City. Mich.
WNES.FM Contral City, Ky.
WNEW.FM Now York.
WNEX.FM Macon, Ga.
WNGO-FM Maytield, $K$ WNHC-FM Now Haven, Conn. WNIB Chicago, 111
WNNJ.FN Nowton, N.J,
WNNJ. FA Nowton, N.I,
W NOB Cleveland, Ohlo (s)
WNOB Cievoland, WNOS.F.FM York, Pa. WNOW. FM York'Pa,
WNSH HIOhland 'Park, III, WNSL.FM Laurel. Milss. WNTA- FM Newark, N.
WMTH W Innetka, III. WNTI Hackettstown, N
WNWC.FM Arlington His., III
WNYE New York, N.Y.
WOAK Royal Oak, Mich
WOAY.FM Dak HIII, W.Va.
WOBN Westerville, Ohio
WOCB-FM W. Yarmouth, Mass
WOHS-FM Shelby, N.C.
w OI.FM Ames, lowa
WOIO Cinclnnati, Ohlo
woiv De Ruyter, N.Y.
WOL.FM Washington, D.C.
WOMC Royal Oak. Mich.
WOMI.FM Owensboro, Ky.
WOMP : FM Bellaire, ohlo
WONO Syraeuse, N. Y
WOPA.FM Oak Park. III.
WOPI-FM Bristol, Tenn.
WOR-FM New York, N.Y.
WORA-FM Mayaguez, P.
WORX-FM Madlson. Ind. WOSC.FM Fulton, N.Y. WOSJ-FM Atlantic City, N.J. WOSU. FM Columbus O hlo WOTW.FM Nashua, N. H. WOUB.FM Athens, Ohio WOW. FM Omaha, Nebr. WOXR Oxford, Ohlo WPAC.FM Patehogue N. Y. WPAD-FM Padueah, Ky, WPAT-FM Paterson, N. Jo WPBC-FM MInneapolis, MInn
C.L. Location WPRS. FM Paris. Ill. WPRW. FM Manassas, Va WPT ETA FMle. WPTF FM Raleigh, N.C. WPTH Fort Wayne, Ind. WPWT Philadglonia Pa WPWT Philadolphia, Pa. WQAL Philatelphia, Pa. WQMS Hamliton, Ohio WQRS-FM Detroit, Mich. WQXI-FM Atlanta, Ga. WaXR-FM New York. N.Y. (s) WOXT.FM Palm Beach, Fia. WRAJ-FM Anna, III. WRAK.FM Williamsport, Pa WRAL.FM Raleigh. N.C. WRAY.FMi Prineeton, Ind. WRBL.FM Columbus Ga WRBS Baltimora, Md. WRC.FM Washington, D.C WRCM New Orleans, La. WRED Youngstown Ohio WREO.FM Ashtabula. Ohlo WREV-FM Reldsville, N.C Columbus, Ohio
WRFK Richmond. Va WRFL Winchester, Va . WRFM Woodside, N.Y. WRFS-FM Alexander City, Ala WRHS Park Forest, III. WRIT.FM Milwaukee, Wis WRJN.FM Racine, Wis. WRJR Lewiston, maine WRKO.FM Boston, Alass. WRLB Long Branch, N.J.(s) WRLX Hopkinsvilio. Ky. WRLD-FM Lanett, Ala WRMP Detroit, Mlich. WRNJ Atlantle City, N.J. WRNL.FM Richmond, Va WRNW Mount Kisco, N. Y. WROC.FM Rochester, N.Y WROK-FM Rockford. Iit. WROW-FM Albany, N.Y. WROY-FM Carmi, ill. WRPI Troy, N,Y. WRPN. FM RIpon, wIs. WRR-F M Dallas, Tex WRRN Warren, Pa.
C.L.

Location
WRSW-FM Warsaw, Ind. WRTC-FM Hartiord, Conn WRTI-FM Philadelohia, Pa. WRUF.FM Gainesulle Fia WRUN-FM Utica, N.Y WRVA.FM Richmon. WRVB.FM Madison, Wis. WRVC Nortolk, $V$ a. WRVP Now York, N.Y WRXO-FM Roxboro. N.C. WRXB AIt Carmel, III. WSAI.FM CIncinnati. Ohio WSAMPFM Saginaw, Mlch. WSB-FM Atlanta, Ga, WSBC.FM Chicago, ill WSBF-FM Clemson, S.C. WSCB Sprinefield. Mass. WSEI Efnoham. ill. WSEV.FM Seviervilie, Tenn. WSFM Birmingham. Ala. WSHS Floral Park. N.Y. WSID Baltimore, Md. WSIU Carbondale, III. WSJS-FM Winston-Salem, N.C. WSKS Wabash. Ind. WSIX-FM Nashville, Tenn. WSLM-FM Salem, Ind. WSLN Delaware, Ohio WSLS. FM Roanoke. Va . WSMC.FM Collegedale, Tenn. WSMO.FM Waldorf. Md. WSMI-F M Litchfiold, ill. WSNJ-FM Bripeton, N.J. WSNW.FM Seneca, S.C. WSOC•FM Charlotte, N.C. WSOM Salem. Ohio WSON-FM Henderson, Ky WSOU S. Orange, N.J. WSPA.FMI Spartanturg, S.C.(s) WSPD.FM Toledo, Ohio WSPE Sprincrille, N.Y WSPT.FM Stevens Point. W/s. WSRW-FM Hillsboro, Ohlo WSTC.FM Stamford, Conn WSTP.FM Salisbury, N.C. WSTR-FM Sturgis, Mitm. WSTV.FM Steubenville, Ohio WSVA.FM Harrisonburg, Va.
C.L.

Locafion
WSVS.FM Crowe, Va. WSWM East Lansing. Mich. WSYR.FM Syracuse, N. Y. (s) WTAD.FM Quincy, III. WTAG.FM Worcester, Mass. WTAR Norfolk. $V$ a. WTAX. FM Springfield, Ill. WTBO-FM Cumberland. Md. WTBS Cambridoe, Mass. WTCX St. Petersburg. Fla. WTDS Toirdo, Ohio WTFM Babylon, N.Y WTHI-FM Terro Haute, Ind. WTHS Mlami, Fla. WTIC-FM Hartford, Conn. WTIS.FM Jackson, Tenn. WTJU Charlottesville, Va. WTMA-FM Charleston, S.C. WTMJ.FM Milwaukee, Wis. WTNC.FM Thomasville, N.C. WTOA Trenton, N.J. WTOC-FM Savannah, Ga. WTOL-FM Toledo. Ohio WTOP.FM Washington. D.C. WTOS Wauwatosa, Wis. WTRC.FM Elkhart, Ind. WTRT Toledo, Ohio WTSB-FM Lumberton, N.C. WTSV.FM Claremont, N.H. WTTC-FM Towanda, Pa. WTTR-FM Westminster, Md. WTTV-FM Bloomington, Ind. WTUN Tampa, Fla WTVB-FM Coldwater, Mich. WTVN-FM Columbus, Ohio WUCB-FM Chlcago, Ill. WULX-FM Richmond, ind. WUNC Chapel Hill, N.C. WUOA Tuscaloosa, Ala. WUOM Ann Arbor. Mich. WUOT Knexville. Tenn. WUPY Lynn, Mass. (s) WUSC-FM Columbia, S.C. WUST.FM Bethesda, Md. WUSV Scranton. Pa . WVAM.FM Altoona, Pa. WVBR-FM Ithaca, N.Y. WVCG-FM Corat Gables, Fla. WVEC.FM Hampton, Va!
C.L.

## Location

WVHC Hempstead, N.Y. WVJS.FM Owensbero, Ky. WVKO.FM Columbus, onio WVLN.FM OIney, II: WVMC.FM Mt, Carmel, III. WVNJ.FM Newark, N.J. WVOT.FM Wilson, N.C. WVOX-FM New Rochelie, N.Y WVSH Huntingion, Ind. WVST St. Potersburg. Fla WVTS Terre Haute, Ind. wWCF Greenfield. wis. WWCO-FM Waterbury, Conn. WWDC-FM Washington, D.C. WWGP-FM Sanford, N.C. WWHI Muncie, Ind. WWIL.FM Ft Lauderdale, Fla WWJ-FM Detroit, Mich. WWKS Macomb, III. WWMT New Orleans, La WWOD-FM Lyachburg. Va WWOL-FM Buffalo, N.Y. WWPB Mlami, Fla. WWST.FM Wooster, Ohlo WWSW. FMt Plitsburgh, Pa. WWTV-FM Cadilac, Mieh. ww wS Greenville, N.C. WWYN Erie, Pa WXCN Providence, R.I. WXFM Elmwood Park, lil. WXHR Cambridge, Mass. WXPN Philadelphia, Pa. WXTC Annapolis, Md. WXUR-FM Media, Pa. WXYZ-FM Detroit, Mleh. WYAK Sarasota. Fla. WYBC.FM New Haven. Conn. WYCA Hammond, Ind. WYCE Warwick. R.I. WYCR York. Hanover, Pa. WYFI Norfolk, Va. W YFM Charlotte, N.C. wYFS Winston.Salom, M.C. WYSO Yellow Springs, Ohio WYZZ wlikes-Barre, Pa. w2FM Jacksonville, Fla. W21P.FM Cincinnati. Ohlo

Canadian FM Stations by Location

| cation | C.L. |  |
| :---: | :---: | :---: |
| Brampton, Ont. | CHIC.F | 102 |
| Brantford, Ont. | CKPC.FM | 92.1 |
| Cornwall, Ont. | CJSS.FM | 104.5 |
| Edmonton, Alta | CFFN.EM | 100.3 |
|  | CJCA.FM | 99.5 |
|  | CKUA.FM | 98.1 |
| $\begin{gathered} \text { Ft. WII } \\ \text { Ont. } \end{gathered}$ | CKPR.FM | 94.3 |
| Hatlfax. | CHNS.FM | 96.1 |
| Kingston, Ont. | CFRC-FM | 91.9 |


| Location | C.L. | Mc. | Location | C.L. | Me. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | CKLC.FM | 99.5 | Ottawa, Ont. | CBO.FM | 103.3 |
|  | CKWS.FM | 96.3 |  | CFRA.FM | 93.9 |
| Kitehener, Ont. | CKCR.FM | 96.7 | Quebec. Que. | CHRC-FM | 98.1 |
| Lethbrisige, Alta. | CHEC.FM | 100.9 | Rtmouskl. Que. | CJBR.FM | 101.5 |
| London, Ont. | CFPL.FM | 95.9 | St. Catharines. |  |  |
| montreal, Que. | CBF.FM | 95.1 | Ont. | CKTB-FM | 97.7 |
|  | CBA.FM | 100.7 | Sherbrooke. Que. | CHLT.FM | 102.7 |
|  | CFCF-FM | t06.5 | Timmins. Ont. | CKGB.FM | 94.5 |
| Oshawa, Ont. | CKLB.FM | 93.5 | Toronto, Ont | CBC.FM | 99.1 |


| Location | C.L. | Mc. |
| :---: | :---: | :---: |
|  | CFRB.FM CHFI.FM | $\begin{array}{r} 99.9 \\ -98.1 \end{array}$ |
|  | CJRT-FM | 91.1 |
| Vancouver, B.C. | CBU.FM | 105.7 |
|  | CHQM.FM | 103.5 |
| Verdun, Que. | CKVL.FM | 96.9 |
| Victorla, B.C. | CKDA.FM | 98.5 |
| Windsor, Ont. | CKLW.FM | 93.9 |
| WInnipeg, Man | CJOB-FM | 97. |

## U. S. Television Stations

Territories and possessions follow states. Chan., channel number; asterisk (*) indicates educational station.

| Locotion | C.L. Cho |  | Location | C.L. Ch |  | Location | C.L. Ch |  | Location | C.L. C |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALABAMA |  |  | Texarka | KATV <br> KCMC-TV | $\begin{aligned} & 7 \\ & 6 \end{aligned}$ | Denver | KROO-TV | $\begin{array}{r} 13 \\ 9 \end{array}$ | St. Petersburg | wSUN-TV WFSU.TV |  |
| Andalusia | WAPITE | $i^{2}$ |  |  |  |  | KLZ.TV | $\begin{aligned} & 9 \\ & 7 \end{aligned}$ | Tampa | WFLA.TV | 8 |
| Birmingham | $\begin{aligned} & \text { WAPI-TV } \\ & \text { WBIC } \end{aligned}$ | -13 | CALIFORNIA |  |  |  | KOA-TV KRMA-TV | $\begin{array}{r} 4 \\ -6 \end{array}$ |  | WEDU | 13 |
|  | WBRC.TV | ${ }^{6}$ | Bakersfield | КВАК-ТУ | $\begin{aligned} & 29 \\ & 10 \end{aligned}$ |  |  | 2 | W. Palm Beach | WEAT.TV | 12 |
| Decatur | WMSL.TV | ${ }_{2}^{23}$ |  | $\begin{aligned} & \text { KERO-TV } \\ & \text { KLYD-T } \end{aligned}$ | $\begin{aligned} & 10 \\ & 17 \end{aligned}$ | Grand Junctlon | $\begin{aligned} & \text { KREX-TV } \\ & \text { KREYYTY } \end{aligned}$ | $10^{5}$ | GE | GIA |  |
| Florent | WOWL | 15 | Chico | KHSL.TV | 12 | Pueblo | KCSJ-TV | 5 |  |  |  |
| Huntsville | WAFG-TV | 31 | El Centro | XEM.TV | 3 | Bridgeport | WICC.TV | 43 | Albany | ALB | 10 |
| Mable | WALA.TV | 10 | Eureka | KHEM-TV <br> KVIQ.TV | 3 6 | Hartford | WTIC:TY | 18 | Athens Atlanta |  | 8 |
| Mantgamery | cov.TV | 20 | Fresno | KFRE.TV | 30 |  |  |  |  | WSB. | 2 |
| Munford | SFA.TV | 12 |  | KAIL | 53 | CONN | TICUT |  |  | WETV | 11 |
| - Munford | WCIQ WSLA | -7 |  | KLED <br> KMJ.TV | 24 |  |  |  |  | $\begin{aligned} & \text { WLW.A } \\ & \text { WJBF } \end{aligned}$ | 116 |
| Selma | WSLA | 8 | Los Angeles | KABC-TV | 24 | New Britain Now Haven | WHNB.TV | ${ }_{8}^{30}$ | Augusta |  | 12 |
| ALASKA |  |  |  | $K C O P$ | 13 | Waterbury | WATR-TV |  | Columbus | WRBL-TV | 3 |
| Anchorase | KENI-TV | 2 |  | KNXT | 2 | DIST. OF | COLUMB |  | Macon | WMAZ-TV | 13 |
|  | KFTVA | 11 |  | KRCA | 5 | Washington |  |  | Savannah | WSAV-TV | ${ }^{3}$ |
| Fairbanks | KFAR-TV | $11^{2}$ |  | $\begin{aligned} & \text { KTLA } \\ & \text { KTTV } \end{aligned}$ | $1{ }^{5}$ | Washington | WMAL-TV | 7 |  | WTOC.T | 11 |
| Juneau | KINY-TV | 8 | Oakiand | KTVU | 2 |  | -YRC-TV | 4 | Thomasvillo | WCTV | 6 |
|  |  |  | Redding | KVIP.TV | 7 |  | 'YTOP.TV |  | Waycross | WEGS-TV | 8 |
| ARIZONA |  |  | Sacramento | KXTV | 10 |  | WTTG |  |  |  |  |
| Douglas | KCDA | 10 |  | VUE | 40 | FLO | RIDA |  |  |  |  |
| Phoenlx | KOOLLTV | ${ }^{10}$ |  | KVIE SBW-TV | ${ }^{6} 8$ | Daytona Beach | WESH-TV |  | Hilo | $\begin{aligned} & \text { KHBC-TV } \\ & \text { KHJJK } \end{aligned}$ | 13 |
|  | KPHO.TV |  | San Dlego | KFMB-TV | 8 | Fort Plerce-Vero | Beach WTVI | 19 | Honaluit | GMB.TV | 9 |
|  | KTKYVK | ${ }^{3}$ |  | KOGO-TV | 10 | Fort Myers | WINK.TV | 11 |  | KONA | 2 |
|  | KTAR-TV | 12 | (Tiluana, Mex.) <br> San Franelseo | XETV |  | Galnesville | WUFT | ${ }^{5} 5$ |  | HVH.TV | 4 |
| Tueson | KGUN.TV | ${ }^{9}$ |  | GO.TV |  | Jacksonvilie |  | $12$ | Walluku |  | 7 |
|  | $\begin{aligned} & \text { KOLD-TV } \\ & \text { KVOA.TV } \end{aligned}$ | 13 |  | pix | .5 |  |  | 4 |  | KMVL.TV | 12 |
|  | KUAT | -6 |  |  |  | Mlaml | WCKT | 7 |  |  |  |
| Yúma | Kiva | 11 |  | KEZE.TV | 20 |  | WLBW.TV | 10 |  | 10 |  |
| ARKANSAS |  |  | San Jose | NTV | 11 |  | WTHS.TV | ${ }^{2}$ | Bols | KBOS-TV | 2 |
|  |  |  | Santa Barbara | KEY-T | 3 |  | WTVJ | 4 |  | - |  |
| $\begin{aligned} & \text { El Dorado } \\ & \text { Ft. Smilth } \end{aligned}$ | $\begin{aligned} & \text { KTVE } \\ & \text { KFSA-TV } \end{aligned}$ | 10 | Stockton | KOVR | 13 | Orlando | $\begin{aligned} & \text { OBO-TV } \\ & \text { LOF-TV } \end{aligned}$ | 9 | Idaho Falls | KIFI.TV | 8 |
| Hot Springs | KFOY-TV |  | COLORADO |  |  | Paim Beach | W WPTV | 5 |  |  |  |
| Little Roek | KARK-TV | $11$ | Colorado Springs | KKTV | 11 | Panama City <br> Ponsacola | $\begin{aligned} & \text { WJDM-TV } \\ & \text { WEAR-TV } \end{aligned}$ | $\begin{aligned} & 7 \\ & 3 \end{aligned}$ | WHITE'S RA | LOG | 183 |


| cation | C.L. Chan. | c.L. Chan. | Location C.L. Chan. | Location | C.L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Lewlston | KLEW-TV | MASSACHUSETTS | NEW MEXICO | Medford | $\text { KMED.TV } 10$ |
| Twin Falls | KLIX-TV 11 |  | Albuquerque KGGM-TV 13 |  | KHTV KOIN.TV <br> 27 |
| ILLINOIS |  | GBE-TV | KOAT-TV 7 |  | 12 |
| Carbondale | WSIU-TV | C.TV | Carlsbad KAVE.TV 6 | Roseburg |  |
| Champaign | WCIA | Greenfeld WRLP | Clovis KVER.TV 12 | PENNS | VANIA |
| Chicaso | BBM.TV WBKB | Springfield WHYN.TV 40 | Roswell KSWS:TV 8 | Altoona | $\begin{aligned} & \text { WFGG.TV } \\ & \text { WICU } \\ & \text { WI } \end{aligned}$ |
|  | WBKB | Worcester WWOR-TV 14 | NEW YORK | Erio |  |
|  | WNBQ | MICHIGAN | Albany <br> WTEN 10 | Harris burg | WHPTV 55 |
| nvilio | WICD 24 | Bay City WNEM.TV | WTRI 35 | Johnstown | WARD.TV 56 |
| Deeatur | WTYP 17 | Cadilla W WTV 13 | Win WCDA 41 |  | W-JAC.TV 6 |
| Harrisburg La Salle | $\begin{array}{ll} \text { WSIL-TV } & 3 \\ \text { WEEQ.TV } & 35 \end{array}$ | Cheboygan WTOM-TV 4  <br> Detrolt WJBK-TV | Binghamton WINR.TV 40 | Lancaster Lebanan | WGAL-TV ${ }^{8}$ |
| Peoria | WEEK.TV 43 | Detrot WSETVS-56 | Buftalo WBEN-TV 4 | Lockhav | WBPZ.TV 32 |
|  | WMBD 31 | WJ.TV 4 | WNED.TV *17 |  | KSt.TV 45 |
|  | TVH 19 | XYZ.TV? | WGR-TV 2 | Philadelohi | CAU.TV 10 |
| Quiney | EM-TV 10 | (Windsor, Ont.) CKLW-TV ${ }^{9}$ | KBw.TV |  | WFIL.TV 6 |
| Rockford | REXXV 13 | Flint WJRT 12 | Cart |  |  |
|  | WTVO 38 | Grand Raplds WOOD-TV 8 | Elmira WSYE-TV 18 |  | PCA.TV 17 |
|  | WHBF.TV ${ }^{4}$ | Kalamazoo WK20-TV ${ }^{3}$ | New York WABC.TV ? | Pittsburgh | WRCV.TV ${ }^{3}$ |
| Urbana | WILL.TV-12 | Marquette WLUC.TV 6 | - 2 | Pittsburgh | ${ }_{1}$ |
| INDIANA |  | Onondaga WILX.TV/WMSB 10 | WOR.TV |  | WED -13 |
|  |  | Sadinaw WKNX-TV 57 | WPIX 11 |  | GEX - 16 |
| Bloomington | w | Werse Cly WPBN.TV 7 |  |  | 4 |
| Eikhar | SJV-TV 28 | ESOTA | HEC.TV 10 |  | DAU.TV 22 |
| Evansvil | WFIE.TV 14 |  | ROC.TV 5 | Wilkes-Barre | BBRETV 28 |
|  | WEHT 50 | Alexandrla KCM | WVET-TV 10 | York | WSBA.TV 43 |
| Ft. Wayne | WANE.TV 15 |  | Schenectady WHERGB Syracuse | HODE | ISLAND |
|  | KG | DALE | YR.TV ${ }_{3}^{8}$ |  |  |
|  | WPTA 21 | Mankato KEYC-TY 12 | Utiea WKTV 2 | Providente | .TV 10 |
| Indlanapolis | WFBMETY ${ }_{\text {W }}$ W ${ }^{\text {W }}$ | Minneapolls KMSP 9 |  |  |  |
|  |  | 4 | NORTH CAROLINA | SOUTH | A |
| Lafayet | WFAM-TV 18 | Rochester KROC.TV 10 | Asherllle WISE.TV 62 |  |  |
| Muncie | WLBC-TV 49 | St. Paul KSTP.TV ${ }^{5}$ |  | Anderson Charleston |  |
| South Bend | WNDU.IV 16 | CALTV 2 | Chapel Hill WUNC.TV ${ }^{4}$ | Charleston | $V^{5}$ |
| Terre Haute | WTHI-TV 10 | MISSISSIPPI | 3 | Clem | WBF.FM ${ }^{\text {P }}$ W8.1 |
| 10WA |  | Columbus WCBI.TV 4 | Greensboro WFMY.TV 2 |  | WCCA.TY 25 |
| Ames |  |  | Greenville WNCT 9 |  | WNOK.TV 67 |
| Cedar Raplds | CR | WTV 12 | Ralelghto WRALTV 5 |  | 4 |
|  | WMT | Laurel WDAM.TV 7 | WEC | Spart | 7 |
| Davenport | wOC.TV | Meridian WTOK-TV 11 | Winston-Salem WSJS.TV 12 |  |  |
| Des | KRNT | WT.TV 30 |  | SOUTH | DAKOTA |
|  |  | MISSOURI | DAKOTA | Aberde | B.TV |
| Fort 0 | karv 21. |  | marck KXMB-TV 12 | Deadwood | OSJ.TV |
| Mason | LO. |  |  | Florence | KDLOTV |
| Stoumwar | KTVO | Cape GIrardeau KFVS. Columbia KOMU.TV K | DickInson Fargo | Mitchell Rapid City | KORN.TV |
| Sloux City | $K V T V$ | Columbia KOMU.TV Hannlbal KHQA.TV | Fargo WDAY-TV 6 | Rapid City | KOTA.TV |
| Wa | KWWL.TV | Jefferson Clity KRCG-TV 13 | Grand Forks KNOX.TV 10 | Reliance | KPLO.TV 6 |
| KANSAS |  | Joplin KODETV 12 | Minot KXMC.TV 13 | Siou | KELO.TV 11 |
|  |  | Kansas City KCMO-TV ${ }^{5}$ | 10T 10 |  | SOO.TV 13 |
|  |  | CSO.TV "19 | Pembina, N.D. KCND-TV 12 | Vermilion | 2 |
| Enslen <br> Garden City | $\begin{array}{ll} \text { KTVC } & 6 \\ \text { KGLD } & 11 \end{array}$ | MBC-TV 9 | Valley Clty KXJB-TV ${ }^{\text {Wllliston }}$ | EN | SSEE |
| Goodland | KWHT.TV 10 | KIrksvllle KTVO | K |  |  |
| Great Bend | KCKT 2 |  | 0 | Chattanooga |  |
| Hays | YSTV 7 | St. Joseph <br> KFEO.TV <br> 2 |  |  |  |
| Hutchlnson Pittsburg | KKTVH 12 | St. Louls | Akron WAKR.TV 49 |  | DX1-TV 7 |
| Pittsburs <br> Topeka | $\begin{array}{ll} \text { KOAM.TV } \\ \text { WIBW.TV } \end{array}$ | KMOX.TV ${ }_{\text {KSD }}$ | Cincinnatl wCPO.TV ${ }^{48}$ | Johnson | WJHL-TV II |
| wiehita | KAKE.TV 10 | 5 | WKRC.TV 12 | Knax | ATE.TV 6 |
|  | KARD-TV | 11 | WLW-T 5 |  | B1R.TV 10 |
| KENTUCKY |  | Sedalla <br> Springield | Cleveland WCIN.TV ${ }^{\text {KYW.TV }} 3$ | memphis | HBBQ-TV 13 |
| Lexington | WLEX.TV 18 |  | 8 |  | WMCT ${ }^{\text {W }}$ |
| Loulsville | WKYT 27 | MONTANA | Columbus WBNS.TV 10 |  | REC-TV |
|  | VE.TV ${ }^{3}$ | MONTANA | Cotumbus WLW.C 4 | Nashillle | WAC.TV |
|  | $\begin{aligned} & \text { WFPK.TV } 15 \\ & \text { WHAS.TV } \end{aligned}$ | Billings K001 | OSU.TV *34 |  | wSIX-TV |
|  | WQXL.TV 41 | Butte KXLF.TV ${ }_{\text {K }}$ | Dayton WHIO.TV ${ }^{\text {W }}$ |  |  |
| ducah | WPSD-TV | Glendive KXGN-TV 5 |  | TE | AS |
| LOUISIANA |  | Great Falls KFBE-TV 5 | Lima WIMA.TV 35 | Abl | KRBC.TV 9 |
|  |  | LL.TV 12 |  | Alpin | ULF.TV 12 |
| Alexandria Baten Rouge | KALB-TV ${ }^{5}$ | Kalispiell Kbluth 9 | Toledo WStile ${ }^{\text {WSPD.TV }} 13$ | A marillo | KFDA.TY 10 |
|  | WAFB.TV 28 | Missoula <br> xMSO-TV 15 | Wejudo GTE.TV ${ }^{\text {W0 }}$ |  | KGNC.TV ${ }^{4}$ |
| Lafayette | KLFY-TV 10 | NEBRASKA |  |  |  |
| Lake Charles | KPLC-TV 7 |  | Voundstown WFMJ.TV 21 | Beaumant | KFOM-TV |
| ree | AG.TV 25 | Grand Island KGIN-TV II | KST.TV 33 | Bio Spring | KEOY-TV |
| nroe | NOEETV - ${ }^{8}$ | Hastings KHAS.TV ${ }^{\text {Hay }}$ | WXTV 45 | - | KRIS.TV 6 |
| New Orleans | Su.rv 6 | Hay Sprinos KOUH.TV ${ }^{\text {Hayes Center }}$ KHPL.TV | Zanesville WHIZ.TV 18 |  | KZTV 10 |
|  | WVUE 13 | Kearney KHOL.TV 13 |  | Dallas | KRLD.TV. ${ }^{4}$ |
|  | WL. | Lincoln KOLN.TV 10 | MA |  | KERA.TV 13 |
| Shroveport | SLA.TV 12 | McCook KUON.TV ${ }^{\text {K }} 12$ | Ada KTEN 10 | El Paso | KELP.TV ${ }^{8}$ |
|  | KTBS-TV ${ }^{\text {K }}$ | McCook North Platte KOMC |  | E Paso | K KOO OV 4 |
| MAINE |  | Oniaha KMİ | Lawton KSWO.TV ${ }^{\text {E }}$ |  | KTSM.TV |
|  |  | TV | Oklatioma Clty KETA * 3 | (Cludad Juatez, | mex. ${ }^{\text {cejety }}$ |
| Augusta WC |  | Scottsblufl WOW.TVKSTF <br> 10 | KOKH.TV ${ }^{25}$ | Ft. Worth | KTVT 11 |
| Bangor | ABI |  | KWTV ${ }_{4}$ |  | VBAP.TV |
| Poiand Spring Portland | WMTW.TV 8 | NEVADA | Tulsa WKY.TV ${ }^{4}$ | Marlingen | PRT |
|  | WMTEH-TV 8 |  | Tulsa KOEO-TV*।I | Houston | KPRC.TV 2 |
|  | WCSAN.TV ${ }^{6}$ | Henderson KLRJ.TV | KTUL-TV 8 |  | KHOU.TV 1 |
| Presque Isio | WAGM.TV 8 | KSHO.TV 13 | KVOO.TV |  | KUHT ${ }^{8}$ |
| MARYLAND |  | Reno | OREGON |  | GNS.TV 8 |
|  |  | NEW HAMPSHIRE |  | Lubbock | KCBD.TV II |
| Baltimore |  |  | Coos Bay KCBY.TV I! |  | 3 |
|  | WBAL-TV 11 | Durham WENH.TV 'll | Corvalils K |  | KTRE-TV 9 |
|  | WMAR-TV 2 | Manchester | Eugen K KEZI.TV 9 |  | VKM.TV |
| Salis bury | WBOC.TV 16 | NEW JER | KOAP.TV 10 | Odessa | kOSA.TV |
| 184 WHLTE'S RADIO LOG |  |  | Klamath KBES.TV Medford 5 | Port Arthur. Beau | $\begin{aligned} & \text { ont } \\ & \text { KPAC.TV } \end{aligned}$ |



Canadian Television Stations


## World-Wide Short-Wave Stations

Most international broadcasting is done within frequency limits agreed upon at international conventions. These frequency ranges are listed here, of the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60, 49 and 41 meter bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best of night, but all year. Reception in the $19,16,13$ and 11 M . bands is best during the day, alsa af night during the summer in the 16 and 19 M . bands.

Abbr.: AIR—All India Radio; RAI—Radiotelevisione Italiana; RTF—Radiodiffusion Television Francaise; VOA-Voice of Americo; RFE—Radio Free Europe. - denotes stations beaming evening U.S. time) broodcosts to the U.S., tmorning or afternoon broadcasts.

Kes. Call and Location 4630 HCGBI, Quito, Ecua. 4765 HJEF, Cali. Col. 4770 ELWA, Nonrovia, LIb. 4770 YVAW, Punto Fili, Ven 4775 Librevilie, Gabon Rep. 4790 YVON, Puerto La Cruz.

4795 Rangoon, Burma
4805 ZYS8. Manaus, Braz. 4810 Y VMG, Maracalbo, Ven 4830 YVOA, San Cristobal,
4835 HJKE, Bogota. Col Ven 4840 Lourenco Marques, Mloz 4840 YVOI, Valera, Von. 4845 HJGF, Buearamanga, Col 4850 YVMS, Barauisimeto. 4870 Cotonou. Dahomey Pen 4880 YVKF Caract $V$ Ren. 4893 Dakar, Mall Fed 4893 PRFG, Mali Fed. 4898 HJAG, Barranquillaz. Col 4900 YVKP, Caracas. Ven. Col

Kcs. Call and Location 4910 HCIMI, Qutio, Ecua. 4910 Conakry Guinea
4915 Accra, Gnana
4920 Y VMA, Brisbane, Aus. 4930 HCIRC, Caracas, Ven. 4930 HCIRC, Quito, Eeva. 4940 Abidjan, Ivory Coast 4940 Abidjan. Ivory Coast 4940 YVMO, Barquisimeto, Ven. 4945 HJCW, Bogota. Col. 4945 Paradys, So. Afr. 4950 Dakar, Mall Fed. 4955 CR6RZ, Coro, Ven. 4955 CR6RZ, Luanda, Ang. 4960 YVLK, Cumana, Ven. 4970 YLK, Caracas, Ven. 4975 Yaounde. Camero 4990 Lapos, Nigeria
4990 YVMQ, Barquisimeto
5010 HCRCX. Qulto, Eeua. Ven 5010 St, George, Grenada.
5010 SL. George, Grenada. B. w.I 5020 HJFW, Manizales; Col. 5020 Niamey, Nider Rep.

Kes. Call and Location 5040 YVMA, Maracalbo. Ven. 5045 Lome. Togo
5050 YVKD. Caraeas, Ven. 5075 HJGC, Bogota. Col. 5873 HRN, Tequelpalpa, Hond 5940 MOsców. U.S.S.R
5952 TGNA, Guatemata, Guat 5954 TIQ. Puerto Limon, C. R 5960 HJCF. Bogota. Col. 5965 YNWW, Granada, Nle. 5980 TGAR, Guatemala, Guat. 5981 Georgetown, Br. Guiana 5982 4VB, Port-au-Prince,

5990 Andorra. Andorra
5990 TGJA, Guatemala, Guat. 5995 Fort.de. France, Mart. 60024 VEC , Cap Haitien, Haiti 6005 RIAS, Berlin. Ger. 6006 TIHBG. San Jose, C. R 6010 XEOL, Mexico City, Mexlco 6015 PRA8, Recife, Braz. 6020 Amman, jordan
6020 Kiev, Ukrainian S.S.R. 6025 Kuala Lumpur, Malaya 6025 Hilversum, Neth.

## METER BANDS

4750 to $5060 \mathrm{ke} / \mathrm{s}(60$ meter bond) 5950 to $6200 \mathrm{kc} / \mathrm{s}$ ( 49 meter band) 7100 to $7300 \mathrm{kc} / \mathrm{s}(41$ meter band) 9500 to $9775 \mathrm{kc} / \mathrm{s}$ (3 1 meter band) 11700 to $11975 \mathrm{kc} / \mathrm{s}$ (25 meter band) 15100 to $15450 \mathrm{kc} / \mathrm{s}$ ( 19 meter band) 17700 to $17900 \mathrm{kc} / \mathrm{s}$ ( 16 mefer band) 21450 to $21750 \mathrm{kc} / \mathrm{s}$ ( 13 meter band) 25600 to $26100 \mathrm{kc} / \mathrm{s}$ (1) mefer band.

Kes. Call and Location G090 XECMT, C. EI Mante.
6095 ZYB7, Sao Pauio, Braz.
6100 VDA, Munich. Ger.
6100 Belgrade, Yugo
6105 XEQM, Merlda, Mex. 6105 Tunis. Tunisia 6115 ZYC7, Rio do Jan., Braz. 6115 Khabarovsk, U.S.S.R. 620 BBX. Buenos Aires 6130 Port Moresby. Now Guinea 6130 Madrid. Spain 6135 HRMF: La Celba, Mond. 6135 Papeete. Tahiti
6140 HCOV5, Azogues. Ecua. G1 40 VLWG, Perth, Aus. 6145 Algleps, Alderia
6147 PRL9. Rilo de Jan., Braz. 6150 VLRG, Melbourne, Aus. 6150 BBC , Landon, Eno. 6155 4VWA. Cap Haitien.
6155 VOA, Salonika, Greece 6160 HJKJ, Bogota, Col.
6160 FEN. Tokyo, Janan
6160 F EN. Tokyo, Japan 6165 HER3, Bern, Switz.
6165 XEWW. Mexico City,

6165 Saigon, Vietnam
gi70 BBC, Limassol. Cyprus G175 RTF. Paris, France 6180 BBC , London, England 6185 HJCT . Bogota, Col. 6190 VOA, Munich, Ger. 6195 HJEZ, Call. Col
6195 HRO2, La Ceiba, Hond.
6195 Pyongyang. N. Korea
6200 HVHW, C. Trullllo, D.R.
08 TGHC, Guatemala, Guat
6215 Pyongyang, N. Korea
6225 Peking, China
6305 Andorra. Andorr
6327 COCF, Havana, Cuba
6345 Ulan Bator, Mong.
6373 Lisbon, Port.
6790 BBC, Limasso, Cyprus 7105 Madrid. Spain
7110 VOA, Colombo, Ceyion 7110 BBC. London, England 7115 Rabat, Moroceo 7115 RFE, Germ
7120 B BC. London. England
7120 BBC, Singapore
7125 Warsaw Poland
7140 Monte Carlo, Monaco.
745 RFE, Ger
7150 Khabarovsk, U.S.S.R.
7160 RTF. Paris, France
7160 VOA, Tangier, Mer.
7165 RFE, Germ.
7180 Aloiers, Alg.
7185 BBC, London. Ene.
7200 BBC, London. Eng.
7200 R. Malaya, Sing.
7205 VOA. Salonika. Gr.
7210 BBC, London, Eng.
7210 Dakar. Mall Fed.
7210 Khabarovsk. U.S.S.R.
7220 VLD7, Melbourne, Aus.
7220 Budapest. Hung.
7230 BBC, London, Eng.
7235 Talpei, Talwan, China
7235 VDA, Munich. Ger.
7240 RTF, Paris, France
7250 BRC, London, Eng.
7255 Sof a, Bule.
7260 Saloon, Vietnam
7270 Motola, Sweden
7270 Magadan, U.S.S.R.
7275 RAl, Romes It.
7280 Teheran, Iran
7280 HVJ. Vat. Clity
7285 Ankara. Turk.
7290 RAI, Rome, It.
7295 Makassar. Celebe
7295 RFE, Ger.
7320 BBC, London, Eno.
7398 Damascus, U.A.R
7505 Peklng, China
7650 YNMS, Leon, Nie.
7670 Sofla. Bulg.
7850 Tirana, Alb.
8900 HCJC3. Zaruma, Eena.
9009 Tel Aviv. Israel
9026 COBZ. Havana, Cuba
9065 Peking, China
9210 Leopoldville, Congo
9360 Madrld, Spain
9363 COBC. Havana, Cuba
9380 Alma Ata. Kazakh S.S.R.
9385 Leonotdville, Congo
9410 BRC, London, Eng.
9440 CP38. La Paz, Bol.

Kes. Call and Locatlon 9458 Peking, Chlna 9500 XEWW, Mexico CIty ${ }_{\text {Hex }}$
9500 Magadan, U.S.S.R
9505 PRB22. Sao Paulo, Braz.
9505 Rabat, Mor
9505 HOLA. Colon, Pan.
9510 Poking, China
9510 VOA. Tangler, Mor.
9515 RAI, Caltanissetta, it.
9515 Ankára, Turkey -
9520 Colombo, Ceylon
9520 Copenhagen, Den.
9520 VDA $_{i}$ Salonika, ${ }^{2}$.
9520 OAXBE, Iquitos, Peru
9523 Paradys, S. Afr.
9525 BBC. London, Eng.
9525 Warsaw. Poland
9530 Coco. Havana, Cub
9530 A1P. Muni Ger
9530 VOA, Couribr. Rhodes
9530 Y VM'Z. Maracaibo, Ven.
9535 Lagos, Nigeria
9535 VOA, Manila, P.I.
9535 HER4, Bern, Swlizz ©
9540 Warsaw, Poland
9540
Otdurman, Sudan
9545 ZYS43, Curltlba, Braz.
9545 HEDS, Bern, Switz.
9550 Al A Bombay, ind
9550 OAXIZ. Tumbes, Peru
9555 CPG, La Paz, Boi.
9555 BBC, London. Eng.
9555 XET'T, Mexieo City, Mex.
9560 RTF, Paris, France
9560 Tokyo, Japan
9563 OAX4R, Lima, Peru
9565 ZYK3. Recife, Braz.
9565 Radio Liberty, Ger.
${ }_{9570}$ Bucharest. Rom. S.S.R
9575 ZYZ27, Rio de Jan., Braz.
9575 Talpel, Formosa
9575 RAI, Rome. Italy
9580 VLA9 9 , Melbourne. Aus
9580 BBC, London. Eng.
9585 ZYR56. Sao Paulo. Braz.
9585 RTF, Paris. France
9588 Poking, China
9590 Djakarta, Indon.
9590 Bueharest. Rom.
9595 JOZ3. Tokyo. Japan
9598 CE960, Santiago. Chile
9600 BBC. London, Eno.
9605 Cologne. Ger.
9610 VLX9, Porth. Alls.
9610 ZYC8. Rio de Jath., Braz
9610 Oslo. Norway
9610 OAX8C, Iquitos. Peru
9615 VOA. Tangler. Moroteo
9 G20 ZYR98, Sao Paulo. Braz.
9620 Peking, China
9620 VOA. Tangler, Mor
9620 Salgon. Vietnam
9625 Brazzaville, Equat. Un.
9625 BBC. London. Eñ.
9625 OAX8k, Iquitos. Peru
9625 Moscow. U.S.S.R.
9630 CRGRL, Luanda, Ang.
9630 VLG9, Melbourne, Aus.
9630 RAI, Rome. Italy
9630 Komsomolsk, U.S.S.R.
9635 2YR83. Aparecida, Braz.
9635 VOA, Munich, Ger.
9635 Lisbon, Portugal
9640
9640
B Cologne, Germany.
9640 Cologne, Germ
9640 HLKS, Seoul, Korea
9640 Moseow. U.S.S.R.
9645 TIFC. San Jose, C.R.
9645 HVJ, Vatlean City
$\mathbf{9 6 5 0}$ BBC, Limassol, Cyprus
9655 Radio Free Europe. Ger.
9660 LRX. Buenos Aires. Arg. 9660 VLa9, Brisbane. Aus. 9660 Radlo Liberty, Ger. 9660 Teheran, Iran
9660 Komsomolsk. U.S.S.R.
${ }_{9665}$ Moscow. U.S.S. R.
9667 Hargelsa, Somalla
9667 TBNA, Guatemala, Guat. 9670 CoCQ. Havana, Cuba 9670 Prague. Czecho.
9675 BBC, London. Eny. 9675 RTF, Parls, France 9675 JOB9, Tokyo, Janan $9680 \mathrm{VLH9}$, is efbourne, Aus. 9680 XEQQ, Mexico Clty. Mex. 9680 VOA, Tangier, Mor.
9680 Paradys, S. Afr.
9685 Algiers, Algerla
A
Arg.
9690 BBC, London. Eng.
9690 BBC. Singapore
9700 Sofia. Bulgaria
9700 Rabat, Morncco

Kes. Call and Location
9705 Brussels, Belg.
9705 Radio $\mathbf{F r e e}$ Europe, Port.
9710 Radio Free Europe,
9710 BBC, London, Eng.
9715 HAlversum. Roth.
9715 Radio Free Europe, Ger.
9720 Paradys,
9725 Tel Aviv. Is srael
9725 RFE. Port.
9730 Brazzaville, Equat. Un.
9730 DZH7, Manila.
9735 Poking China
9735 BBC, London. Eng.
9735 Cologne, Germany
9735 AlR, Madras. India
9740 VOA, Tangler, Mor.
9742 LRSI, Buenos Aires, Arg.
9745 Brussels. Belg.
9745 Brussels, Belg.
9745 Ankara. Turk Eua.
9745 Moscow, Turk.
9745 MBC. London. Eng.
9750 Radio $F$ ree Europe, Port.
9750 Khabarovsk, U.S.S.R.
9755 ZYW 23. Goiania, Braz.
9755 Saigon, Vletnam
9760 BBC, London. Eno
9762 Hanoi, N. Viftnam.
${ }_{9765} \mathbf{~ M o s e w . , ~ U . S . S . R . ~}$
9770 Erazzavilli, Equat. Un.
9770 BBC. London. Eng.
9775 Mostow. U.S.S.R.
9795 Cairo, U.A.R.
9800 Peking, ChIna
9800 Moscow, U.S.S.
9825 BBC, London, Eng. -
9833 Budapest. Hung.
9840 Hanei, N. Viotnam
9860 Atr, Dethi, India
880 Peking, China
9895 Bengazl, Libya
9915 B8C. London. Eng
9973 Peking. China
10335 Ulan Bator. Mono.
10530 Alma Ata. Kazakh S.S.R.
11290 Peking, China
11570 Moscow, U.S.S.R.
11600 Peking, China
11630 Moscow. U.S.S.R.
11650 Peking. China
11665 Calro, U.A.R.
11675 Karachi, Pak.
11680 BBC, London Eng
11685 HVJ, Vat. Clty
11690 Moscow. U.S.S.R.
11705 JOA11. Tokyo. Japan
11705 Horby. Sweden
11705 Moseow. U.S.S.R
11710 VLB 11 . Melbourne, Aus, $t$
il7i0 wROU Delhi, India
11715 YOA. New York, N.Y.
11715 Moscow, U.S.S.R.
11717 Athens, Greece
11720 Brazilia, Brazil
11720 BBC. LImassol, Cyprus
11725 Brazzavitle. Equat. Un
11725 Prague. Czecho.
11725 BBC. Singapore
Il730 Hilversum. Neth.
11735 Rabat, Morocco
$\$ 1735$ Moscow. U.S.S.R.
$\$ 1740$ VLCil, Melbourne. Au
11740 CE1174, Santlago, Chile
11740 Peking. China
11740 VOA. Tangier, Mor.
11745 RFE, Germ.
11750 BBC, London, Eng.
11750 FEN, Tokyo,
11750 FEN. Tokyo, Japan
11755 RFE, Port.
11755 Hilversum, Neth. S.
II755 Komsomolsk, U.S.S.R.
11760 VLBII, Mebourne. Aus.
Il760 VOA. Munich, Ger.
11760 VOA, Tangier, Mठr.
11760 Lourenco Marques, Moz.
11760 Hanol. N. Vietnam
11765 ZYB8, Sao Patulo, Braz.
I 1765 Berlln, E. Germany
11770 Colombo, Ceyion
11770 BBC. London, Eng.
11775 ZYZ28. Rlo de Jan., Braz.
11775 Moseow, U.S.S.R.
11780 B8C. London. Eng.
It785 DJakarta. Indon.
I 1785 VOA, Tangier, Moroceo
11790 BBC, London, Eng.
11790 VOA, Manlla, P.I.
11790 Moscow, U.S.S.R.
11795 Cologne, Ger,
!1795 Djakarta, Indon.
11800 BBC, London, Eng.
11805 RAI. Rome. If.
If805 VOA, Courier, Rhodes
11810 VLBII, Melbourno, Aus, $\uparrow$
11810 RAI, Rome. it.
1/810 Amman, Jordan
! 1810 Bucharest, Rom,

Kcs. Call and Location
11810 Horby, Swedon
11815 Madrid. Spain
11820 BBC, London, Eng.
11820 XEBR, Hermosillo, Mex
iI 825 ELWA, Mormosilia, Mitb.
11825 ELWA, Monrovia, Llb.
11850 WRUL Boston, U.S.A.
11830 Moscow, U.S.S.R.
118300 Moscow, U.S.S
i 1835 Algiers. Alg.
18835 Algiers. Alg.
11835 VOA, Colombo, Caylon
1i835 CXAis, Montevideo, Urug
11840 voA
1840 VOA, Tangler. Mor.
II840 Khabarovsk, U.S.S.R.
11840 Hanoi, N. Vietnam
11845 RTF, Parls, France
11845 Karachi. Pak
11845 Karachi, Pa
11850 So Bulg
11850 AlA. Bombay, India
11850 Oslo. Norway
11855 Brussels, Belg.
11855 Radio Free Europe, Ger,
li855 OZH8, Manila,
II860 Peking, China
11860 BBC. London. Eng.
11860 Moscow. U.S.S.R.
11865 PRA8, Recife, Braz.
18865 VOA, Tangler, Mor,
I 865 VOA, Tangler, Mor.
I 865 HER5. Bern, Swliz.
11865 Tunis. Tun.
11875 ZYN32, Salvador, Braz.
11875 ZYN32, Salvador, Braz.
11875 VOA, Colombo, Ceylon
11875 VOA, Colombo, Ceylo
11875 VOA. Tangler. Mor.
11875 VOA, Tangler, Mor.
11880 BBC, London. Eñ.
11880 XEHH, Mexica City, Mex.
11885 Peking, China
11885 Peking, China
11885 Karachi. Pak.
11885 Radlo Froe Europe, Ger.
11890 Moscow. U.S.S.R.
11895 VOA. Tangier, Mor.
$\$ 1895$ VOA, Tangier, Mor.
11895 VOA, Manila. P.I.
11900 Bucharest, Rumainla
11900 CXAlO. Montevideo. Ur
11900 Moscow. U.S.S.R.
11905 RAi. Rome, Italy ©
I 905 WDSI, New York, U.S.A
11910 BBC. London. Eng.
11910 Budanest. Hung.
11910 Bangkok. Thal.
Iig15 HCJB, Quito Ecua.
11915 HIlversum. Neth.
I 1920 RAI. Paris. France
I 1920 DXF2, Manila. $P$.
11920 DXF2, Manila. P.I.
I 1920 WWO, Cincinnati
U.S.A.

11925 ZYR78, Sao Paulo, Braz
11925 HLK , Seoul, Korea $\dagger$
11925 Warsaw,Pol.
11925 Moseow. U.S.S.R.
$\dagger 1930$ BBC. London, Eng.
11930 BBC. Singapore
I 1935 Radio Liberty, Ger.
II940 CEII 90 , Valparaiso, Chile
11940 JOBII. Tokyo, Japan
l1945 Pekino. China
I1945 BBC, London. Eng.
I 1945 Cotoone. Germany
11950 Warsaw. Poland
11950 Jldda, Saudi Arab.
I 1950 Moscow. U.S.S.R.
11955 BBC , London. Eng.
il955 BBC, SIngapore
I 1960 CElig6, Santlago, Ch.
I 1960 Moseow. U.S.S.R.
I 1965 Radio Liberty. Ger.
11970 Caracas, Ven.
11972 Brazzaville. Equat. Un. -
11975 Peking, China
11975 Moscow, U.S.S.R.
11985 Mloscow, U.S.S.R.
11986 ELW A. Monrovla, Lib.
I 1990 Prague, Czecho.
12000 Hoscow. U.S.S.R.
12010 Hanol. Vietnam
12020 AlR, Delhi. Indaa
12020 Hoscow, U.S.S.R.
12040 BBC. London.
12050 Cairo, U.A.R.
12095 BBC, London. Eng.
15020 Hanoi, N. Vietnam
15030 Peking. China

Kes. Call and Location
15530 VOA, Manita, P,I,
15130 WBOU. New York, USA
5130 MOscow, USSR
15135 PRB23' Sao Paulo, Braz
15135 J0 B15, Tokyo, Japan
15135 Radto Free Eurone, Port.
15140 Peking. China
15140 BBC, London. Eng
15140 AlR, Dethl, Indila
15140 Komsomolsk, USSR
15145 ZYk33, Recite, Brazl1
15145 Radio Free Europe, Port.
15148 CE1515, Santlago, Cnlle
15150 D Jakarta, Indonesia
i5150 Lourenco Marques, 1102.
1550 Lislonn. Portugal
15150 nisscow, USSR.
15153 OAX4T, Llma. Peru
151552 YB9, Sao Paulo, Brazil
15155 Karachi. Pakistan
15155 VOA . Manllas.
15155 WBOU, Now York, USA
15155 Moscow, USSR
15160 VLA15, Melbourne, Aus.
15160 RTF. Paris, France
15160 XEWW. Mexico City, Mex.
${ }^{5} 1560$ Ankara, Turkey
15160 Moscow, USSR
5165 ZYN7, Fortaleza, Braz.
15165 Copenhapen. Denmark
15165 Damascus, UAR
5170 Tromso. Norway
15170 Radio ${ }^{\circ}$ reo Europe,
15175 Peking. China.
15175 Oslo, Norway -
15180 BBC, London, Eng
15180 AlR, Delli, India
15180 Moscow, USSR
15185 VOA. Manila, P.I.
15185 Radio Frre Europe. Port.
15185 WOSI. New York. USA
15190 Brazzavilio, Congo Rep.
15190 Helsinkl . Finland
15190 Komsomolsk. USSR
15190 Moscow, USSR
5195 prapuo.' Czecho.
5195 Radio Free Europe, Ger.
15195 Ankara. Turkey
15200 Paradys, South Afriea
15200 WDSI, New York, USA
15200 M Moscow. USSR
15205 XESC. 'Mexico City, Mex.
15205 WDSI', New York, USA
15210 VLGis, Melbourne, Aus.
15210 VOA. Manila, P.1.
15210 KCBR, Delano, Cal., USA 15210 Moscow. USSR
15215 Radio Free Europe. Port.
15215 VOA , Okinawa, Ryukyu is.
15220 Hillversum. Neth. $\uparrow$
15225 Taipel, Talwan, China
15225 Radio Liberty, Germany
15225 Moscow, USSK
15230 VLH 15. Melbourne. Aus. ${ }_{15230}$ VOA, colombo, Ceylon ${ }_{15330} 53$ BBC, London, Eng. 15235 JOBis, Tokyo. Japan 15235 VOA , Tangier. Muorocco 15235 Komsomolsk, USSTR 15240 VLA15, M Melbourtib. Aus. 15240 Horby, Sweden 5240 Mascow, USSR
15240 Belgrade Yuooslavia 5245 ZYE21. Belem, Brazil 15250 VOA, Manlla, P. I 5250 Bucharest. Rumania 5250 WLWO, Cineinnati, USA 5255 Radio free Europe. Port. 15257 FEN, Tokyo. \apan 15260 BBC, London. England 15265 Colombo, Geylon 15265 Moseow. USSR 15270 Peking, China 15270 AlR, Bombay, Indla 15270 VOA , Tangior. Mloroeco 5270 WBOU. New York. (VOA) 15270 WDSI.' New York, USA 15275 Cologne, Germany 15575 Karachi' Pakistan 5275 VOA Manita, P. M.
15275 Warsaw Poland
 15280 Moscow, USSR
${ }^{15285}$ Brussels, Belpium
5285 Al R. Bombay, indla
15285 WBOU. New York, USA

Kes. Call and Location
15290 LRU, Buenos Alres. Arg. 15290 Peking, China 15290 KCBR. Debano, Cal., USA 15290 WCBR. Delano, Cal. "USA I 5295 Rio do Janeiro, Brazil I 5295 RTF, Paris. France i 5295 VOA, Tangier, Moroceo 15295 Moscow, USSR Moro 15300 B8C, London. Eng. $\uparrow$ 15300 B8C, London, Eng. $\dagger$
15300 OZH9, Manita, P.I. 15305 Dacca, Pakistan
15305 Mascow, USSR
15310 BBC . London, England
15310 BBC. Singapore
$\$ 5310 \mathrm{KCBR}$, Dolano, Cal., USA 15315 VLCIS, Melbourne. AUs. 15315 Pekjng, China
15315 Peking, China
15315 HEU6, Bern, Switz. 15315 HEU6, Bern, Sw
15315 Moscow. USSR
15320 VLCI5, Meibourne, Aus. is320 AiR. Dethi, Indla
15320 VOA . Tangier, Morocco
15325 ZYR228, Sao Paulo, Braz. 15325 RAI, Rome, Italy
15325 JOB'I5. Tokyo, Japan
15330 VOA, Atunlch, Germany
15330 VOC. 8alonka, Greece
15330 WBOU, New York. USA
I 5333 Wrussels, Belplum
15335 ZYU68, Porto Alegre, Braz
15335 Karachl Pakistan
15335 Karachi Pakistan
$\mathbf{1} 5335$ VOA, Aanila, P.l.
15335 Komsomolsk, USSR
15340 Radio Liberty, Germany
15340 Radio Liberty,
15340 Moscow. USSR
15345 LRA. Buenos Aires. Arn 15345 Talpel, Talwan, China 15345 Talpel, Talwan, China 15345 Athens, Greece
15350 RTF, Parls, France
I 5350 WLWO. CincinnatI, USA
15355 Radio Free Europe, Por
I5360 BBC. London, England 15360 Moscow. USSR
15365 WLWO, CIncinnati, Onlo 15370 ZYC9, Rio de Jan., Braz 15370 Radio Liberty. Germany 15375 BBC. London. Eng. 15375 Cologne, Germany $\uparrow$
15380 VOA, Tangler, Moroceo
15380 VOA, Okinawa, Ryukyu Is
15380 WRUL, Boston, USA
15380 WRUL, Boston, U.SA
15385 D2F3. Manlla. P.I..
15385 CXA60. Montevideo, Urug.
15385 Moscow, USSR
15390 BBC, London, Eng
I 5395 Radio Liberty, German
15400 RTF. Parls. France
15400 RTF, Paris, Franc
15400 RAI, Rome, Italy
15405 Cologne, Germany
I 5405 Mloscow, USSR
15407 Paramaribo. Surinam
15410 Prague. Czecho.
15410 Radio Liberty, Germany
t5410 VOA, Tangler, morocco
15415 AFRS, Munich. Germany
15417 Peking. China
15417 BBC, London, Eng.
15420 Brazzaville, Congo Rep.
15420 Madrid. Spain
$\$ 5420$ Moseow, USSR
$\mid 5425$ VLXIS., Perth, Aus.
15425 HJlversum, Neth.
I5430 Cairo, UAR
15430 Moseow, USSR
15435 BBC , London. Eng
15435 BBC, Singapore
15440 VOA. Munich, Germany
$\$ 5440$ Mosicow. USSR
15445 Brazzaville, Congo Rep.
15445 Hllversum, Neth.
15447 BBC, London, Eng.
15450 Komsomolsk, USSR
15465 Paramarlbo. SurInam
15470 Moseow, USSR
15475 Calro, UAR
15480 Peking, China
15480 AlR, Delhi, Indla
15520 Peking, China
15555 Peking, China
17605 Peking, ChJna
17675 Peking. China
17690 Calro, UAR
17695 BBC, London. Eng.

Kcs. Call and Location
17700 BBC , London, Eng.
17700 Moscow, USS'
17700 Moscow. USSR
17705 AlR, Delhi, Indía
17705 VOA . Tangler, Morocco
17710 VLGi7. Melbourne, Aus. 17710 WLWO, Cincinnati, USA 17710 Moscow, USSR
17715 BBC , London. Eng. -
17715 VOA, Celombo, Ceylon 17720 Pekíng, China
17720 Brazzaville, Congo Rep.
17720 Radio Liberty, Germany 17720 Moscow, USSR 17722 San lose dos C
17725 Radio Free Europe, Prazt. 17725 AlR. Delhi, India
17730 BBC, London En日
17730 ABC, London, Eng.
17730 Radio Liberty, Germany
17735 Radio Free Europe, Port 17735 Radio Free Eufope, Port.
I7355 KCBR Delane Calit 17735 KCBR, Dolane, Calif.
17735 WV. Vatican City
17740 WLWO, Cinelnnati, USA
17740 BBC, London. Eng.
17740 BBC, London. Eng.
17740 Moscow, USSR
$17745, \mathrm{BBC}$. London
17745 KBC, London, Eng.
17745 VOA, Mianlla. P.i.
17745 PoA, Manla, P.I.
17750 WRUL, Boston, USA
$17750 \vee 0 \mathrm{~V}$, Tangier, Morocco
17750 Moscow. USSR
17755 Prague, Czecho.
17755 8BC, Singapore
17760 WGEO, Schenectady, USA
17760 AlR, Delhi, India
17765 RTF, Paris, Franc
17765 Peking, China
17770 RAI, Rome, Italy
17770 Radio Ffee, Europe, Port.
17770 KCBR, Delano. Cal., USA
17775 Hilversum, Neth
17780 WBOU, New York, USA
17780 VOA, Manila, Pil. USA
17780 Moscow, USSR
17785 HER7, Berne, Switz.
17785 AlR. Delhi, Indla
17788 Taipel. Formosa, China
17790 BBC, London, Eng.
17790 Praque. Czecho.
17790 AlR Delhi, India
17795 KGEI . San Fran.. USA
17795 WLWO, Cincinnati, USA
17795 Moscow, USSR
17795 Mostow. USSR
17800 Holsinki. Finland Angola
17800 Heisinkt. Finland 1
17800 RAl. Rome, Italy
17800 RALI. Rome, Italy
17805 Radio Free Europe. Port.
17805 DZI6. Manila, P.I.
17810 BBC, Lendon. Eng. $\dagger$
17810 AlR, Dethi, India
17810 Moscow, USSR
17815 Prague, Czecho.
17815 Cologne, Germany
17815 KCBR, Delano, Calle.
17815 MOScow, USSR t
17823 Ankara, Turkey. N.Z
17825 JOA17. Tokyo, Japan -
17825 Oslo. Norway,
17830 AlR, Delhi, India
17830 WDSI. Now York (VOA)
17830 WLWO, Cincinnati. USA
17835 Radlo Free Europe. Port.
17840 VLB17. Melbourity. Aus.
17840 Horby, Sweden $f^{\prime}$
17840 A oscow. USSR
17840 HVd. Vatican Clity
17845 Colonne, Germany
17845 WRUL, Boston. USA
17850 RTF, Paris. France
17850 M Moscow, USSR
17855 VOA, Tangler. Morocco
17855 JOA17 Tokyo, Japan
17855 Radio ${ }^{\text {F Freo Europe, Por }}$
17860 Brussels, Belglum
17860 BBC, London, Eng.
17860 Damascus. UAR
17865 Radio Liberty, Germany
17870 BBC London. Eng.
17875 PRL2, Rlo do Jan. Braz
17875 PRL2, Rlo do Jan., Braz.

Kes, Call and Location
17875 Radio Free Europe, Port.
17880 Lisbon. Portugal
17880 Lisbon. Portuga
17880 Tunis, Tunisia
17880 Komsomolsk. USSR
17880 Moscow, USSR
17885 Radlo Free Europe, Port
17888 Talpel, Formosa, China
17890 HCJB, Quito. Ecuador
17890 8BC, London, Ene.
17890 HLK42, Seoul. Korea
17892 Voice of Free Africa
17895 Lisbon, Part.
17895 Moscow. USSR
17900 Peking, China
17920 Cairo. UAR
18080 BBC, London, Erg.
21450 Pragus
21450 Prague, Czecho.
21455 VOA
21455 VOA. Tangier, Morocco
21460 KCBR, Delano,
21460 KCBR, Delano, Calif.
21460 WRUL, Boston, USA
21470 BBC, London, Eng.
21480 Hiliversum, Neth.
21480 Hiliversum. Neth
21485 Radio Free Europe. Port.
21485 WLwo. Cincinnati,
21485 WLWO, Cincinnati, USA
21490 BEC Lindon
21490 BGC. London, Eng.
21490 Cologne Germany
21490 Cologne, Germany
21495 Libon. Port
21495 Lisbon. Port.
21495 D218. Manila, P.I.
21500 Brazzaville, Congo Rep.
21505 WDSI
21505 WDSI, New York. USA
21505 MOscow USSR
21505 Moscow, USSR
21510 Brussels, Belodum
21515 HVJ . Vatican City
21515 HVJ, Vatican City
21520 HER8, Berne, Switz
21520 HER8, Berne, S
21525 Moscow, USSR
21530 BBC. London, Eng.
21535 ELWA, Monrovia, Liberia -
21540 VLD21, Melbourne, Aus.
21540 WBOU. New York, USA
21550 BBC, London. Enp.
21550 Moscow, USSA
21565 Hilversume, Italy
21565 Hilversum. Neth
21570 WBOU New Yor
21570 WBOU New York (VOA)
21575 Moscow
21575 Moscow, USSR.
21580 RTF, Parls, France
21590 WGEO, Schenectady, USA
21600 VLG2I, Melbourne, Aus.
21600 Radio Free Europe, Port.
21605 AIR, Delhi, India,
21605 AlR, Deiht, India
21605 HEIS, Berne, Switz.
21610 WLWO Cincinnati (VOA)
21615 BBC, London, Eng.
21620 AlR, Delhi, India
21620 JOB21. Tokyo, Japan
21625 Mestew. USSR
21630 BBC. London, Eng.
21640 BBC, London, Eng
21650 BBC, London, Eno.
21650 Cologne, Germany
21650 WDSI. New York, USA
21650 WDSI. New York, USA
21655 VOA, Manila, Pil.
21655 VOA, Manila, Pil.
21660 BBC, London, En.
21665 Radio Free Europe. Port
21665 Radio Free E
21670 Osjo, Norway
21675 BBC . London. Eng.
21685 BBC VLC21, Melbourne, Aus.
21685 Dacea. Pakistan
21690 WDSI, New York. USA
21700 AlR, belht. India
21700 Lisbon, Port.
21705 VOA, Tangier, Morocco
21710 BBC. London, Eng.
21720 Radio Free Europe.
21720 Radio Free Europe. Port.
21730 Brussels, Belglum
21735 Cologne, Germany
21735 WLWO, Cincinnati, USA
21740 BBC. London. Eng.
21740 KCBR, Delano, Cal. USA
21745 Radio Free Europe. Port. 25610 Hilversum. Neth.
25630 KCBR, Delano, Cal., USA
25650 BBC. London. Eng.
25670 BBC, London, Eng.
25720 BBCX London, Eng.
25735 VLY25. Melbourne. Aus.
25750 BBC. London. Eng.
25800. Paradys, S. Afr.

25840 BBC. London. Eng.
25880 VOA, Tangler, Morocco 25900 Oslo, Norway
25920 BBC. London, Eng.
26040 WBOU. New York, USA
25950 WBOU. Now York, USA
26080 BBC, London. Eng.

## Canadian Short-Wave-Domestic and International

Ke. C.L. Location
5970 CBNX St. John's, Nfid.
5970 CKNA Montreal, Que.*
5990 CHAY Montreal, Que.* 6005 CFCX Montreal, Que. 6010 CJCX Sydney, N.S. 6030 CFVP Calgary, Alta. 6060 CKRZ Montreal, Que. 6070 CFRX Toronto, Ont. 6080 CKFX Vancouver, B.C. 6090 CBFW Montreal, Que.
6090 CKOB Montreal, Que.

Precision performance is your passport to the amazing world of short-wave listening


## hallicraffers

5th and Kostner Avenues, Chicago 24, llinois "world-range" radio


Sx.110 Recelver- $\$ 169.95$. Standard broadcast. Three short wave bands ( $1550 \mathrm{kc}-34 \mathrm{Mc}$ ). Slide rule electrical bandspread dial. Built-in " $S$ " meter, antenna trimmer, crystal filter. Uses $R$-48 speaker ( $\$ 19.95$ ).
S. 120 Receiver $-\$ 69,3.3$. Standard broadcast plus three short wave bands ( $1650 \mathrm{kc}-31 \mathrm{Mc}$ ). Threeway antenna system. ${ }^{\text {a }}$ Slide rule electrical bandspread dial. B.F.O./selectivity control.


Export Sales: International Division, Raytheon Mfs. Co., Waltham, Mass. Canada: Gould Sales $\approx 0 .$, Montreal, P.Q.


# Learn RADlO, TEELEVISION NELECTRONICS by Practicing at Home 

 in Your Spare TimeAt No Extro Cost you get speciolly developed Electronic Troining Kirs for praclical experience. Shop and laboratory proctice at home mak learning easier, interesting, faster. You do not need a high school diplomo of previous expe-

## rience. <br> Increasing Demand for Trained Men

This is the Electronics age. Men with Electronic know-how are in demand. They enjoy high pay and growing opportunities for advancement. Satellites, Radar, Automation in I ndustry; Missiles, Rockets. Planes, Stereo, TV, Radio, Two Way Communications for trans-
 portation are a few of the fantasgrowing Electronics industry. If you are not completely satisfied with your work; if you are doubtful about your future, investigate Electronics.
High Pay, Prestige, Bright Future
What branch of Electronics interests you? Thousands of successful NRI graduates prove that NRI's learn-by-practice method is the way to success. You start in your chosent career 'way ahead of the man who only learns from books. You do not need to give up your job. You do not need to go away to school. You learn at home, get practical knowledge from training kits NRI provides.


## Cut Out and Mail - No Stamp Needed

## NATIONAL RADIO INSTITUTE WASHINGTON 16, D.C.

Send me your Electronic, Radio-TV catalog without cost or obligation. I am interested in the course checked below: (No representative will call. Please PRINT.)

| $\square$ Industrial Electronics | $\square$ FCC License |
| :--- | :--- |
| $\square$ Communications | $\square$ Servicing |

$\qquad$
$\square$ Communications

$$
\square \text { Servicing }
$$

Name
Age.

## NRI Has Trained Thousands for Success

"I get over iwice the salary I made before enrolling. NRI train. IngKa vemea thorough underatand ing." H, ATKINSON, Austin. Tex

"Now in charge of sound effecta for CBC. Nill opened doora to greater opjortunity for me." F. Tubor, Toronto, Ontario.


Averazed \$150 a month spare time before traduated core graduated Now have my own f. w. cox, Holly wood, Cal.

## MEM COURSE IN <br> TMRN ELECTRONICS AME



Train With the Leader NRI is the world's oldest and largest home study Electronics school. You benefit from the experience NRI has gained from training men for 45 years. NRI offers you proven courses of home study in Electronics; Principles, Practices and Maintenance-Radio Television Communications-Radio Television Servicing.
Start Soon, Earn More
for its


Institute

## inture

City

Soon after enrolling NRI shows you how to apply your knowledge to earn extra money doing Electronic repairs or servicing Radio and Television sets for friends and neighbors. Take the first step toward success now. Find out what NIRI offers you. Mail the postage-
free card. No obligation, Cost of NRI training is low. Monthly payment plan a vailable. NA. TIONAL RADIO INSTITUTE Washington 16, D.C


[^0]:    501 E. Crockett, San Antonio 6, Texas
    Start sending me A.13.S.C."s "Electronles Lab" In tour kits, one each month. If not sathsfied on inspection of first kit $I$ may return it for immediate refund. (it choose the plan checked)
    ( ) I enclose $\$ 8.00$ and will pay $\$ 3.45$ plus COb postage on arrival of each kit. I may cancel unshipped kits at any time.
    ( ) I enclose \$15.80, full payment. IOATAGE PAll). for all four kits. I may cancel at any time and get full refund on unshipjed kits.

[^1]:    Name
    $\qquad$
    Cify
    Zone .. State

[^2]:    Science and Mechanics Magazine Handbook Division
    Dept. 3000, 505 Park Avenue
    New York 22, N. Y.
    Enclosed is $\$ 1.00$; please send me my copy of Electrical
    Handbook-585
    name.
    ADDRESS.
    CITY. . . . . . . . . . . . . . . . . . . . . . . ZONE. . . . STATE.

[^3]:    1 miniature 7 pin type socket, Amphenol
    Ohmite Z. 50 ( 50 mc ) R.F. Choke
    0.002 mfd ceramic capacitors, disk type

    47 ohm, 1 watt resistor
    $100 \mathrm{hm}, 1$ watt resistor
    2 lug (Insulated) tie point strip
    1 lug (insulated) tie point strips
    6AG5 tube
    Misc. \# 14 tinned copper wire, rosin core solder , hook-up wire, 6.32 machlne screws and nuts, twin-led and line cord

[^4]:    matierials list-adjustable mike stand No. Req. No. Req. $\quad$ Size and Description
    ${ }_{1} \quad 3 / 4 \times 11 \times 13^{\prime \prime}$ plywood (base) (or use $11 / 8^{\prime \prime}$ stock)
    1 Newell closet poles (59c size at most dime stores)
    1 Amphenol series 75 -type PCIM non-shorting chassis mount. ing microphone connector (radio parts dealers).
    $111 / \mathrm{B}^{\prime \prime}$-pipe coupling.
    1 $13 / 10^{\circ \prime}$ od and $3 / 3^{\prime \prime}$ id fiber or plastic washer (you can make this)
    ${ }^{5} \mathbf{5}^{\prime \prime}$, screw-lype rubber bumpers
    $M$ isc. $\quad 3 / 4^{\prime \prime}$, tape, 1 medium-size rubber grommet, short piece of $3 / 4^{\prime \prime}$ dowel, glue, paint

[^5]:    MATERIALS LIST-ONE TUBE RADIO
    No. Req.
    Description
    1.125 volt, 15 milliampere, half wave rectifier power transformer (Stancor PS.8415)
    1 dry disc selenium rectifier (Federal No, 1002A)
    230 mfd 150 volt electrolytic filter capacitors (Cormell-Dubilier)
    base-mounting 8 prong tube socket (I.C.A.)
    ferrite antenna coil (Miller 6300)
    variable capacitor 365 mmfd max. (Mllier 2111)
    6SN7 GTB Tube
    100 mmifd mica capacitor (Aerovox)
    4000 mmid mica capatitors (Aerovox)
    01 mid 400 volt paper capacitor (Cornell-Dubilier)
    1 mfd 200 volt paper capacitors (one for testind) (Cornelf. Dubilier)
    2 megohm 1 watt resistor (I.C.A.)
    6000 ohm I watt resistor (I.C.A.)
    56 K ohm 1 watt resistor (I.C.A.)
    2200 ohm 1 watt resistor (I.C.A.)
    220 ohm 1 watt resistor (I.C.A.)
    50000 ohm potentiometer with switch, linear taper (Mallory) Fahnestock terminal clips
    bar knobs set screw type for $1 / 4^{\prime \prime}$ shaft
    dial plate for tuning capatitor (Crowe)
    line cord with plut
    pair "Dependable" headphones (Trimm)
    wood for sheif support and panel.
    Miscellaneous wire, rosin-core solder, and hardware. Similar parts made by other manufacturers may be substituted with. out difficulty. Resistor and capacitor valves may vary within $\pm 20 \%$ without seriously disturbing circult function.

